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Transport phenomena in plant-internal processes: growth ad
carbon dioxide transport

Summary

Aim of the here presented work was the quantitative modelfrgant-internal processes.
Growth of cells and tissues was one of the central themdsuah the lateral transport
of carbon dioxide (CQ) was also treated. These processes depend strongly on fluxes
of water, hormones and/or GO Thus, suitable transport equations were sought for to
describe these processes.

Using the Lockhart-Equations, which are well known in b@gptdo describe the growth
of awhole cell, local formulations of energy and mass corag&m were obtained. These
formulations can be used to determine local growth patterreglls. This was shown
through a numerical example of a spherical cell. Finallg tonservation equations
found, were shown to be consistent with the empirical LockEguations.

Plant organs, such as roots and hypocotyls, have spatiateamgoral growth pat-
terns. For example, the spatial distributions of growth fim@ry roots is given by a
bell-shaped distribution along the organ axis. This paldic one dimensional growth
pattern was modeled here through the transport of two hyicdi phytohormones and
using the Lockhart-Equations as the underlying growth ggus. Because the hypothet-
ical hormones were chosen to have auxin and cytokinin (twbemost important plant
hormones) properties, the model stays in a plant physicdbgiontext.

Not only one dimensional growth patterns are found in roats$ laypocotyls. These
tend to have organ curvature and torsion, as becomes claaupaly in tropisms (e.g.
gravitropism, hydrotropisms and phototropism). Althoulgese processes are known for
a long time in biology, no suitable measures to characteéheegoroduction of curvature
and torsion have been defined. Using a curvature and torsiosecvation equation, a
measure for their production was found here. These measgesthen exemplified in
a simple model of the root gravitropic reaction, and appliedhe characterization of
the gravitropic reaction ofrabidopsis thaliangL.) Heynh. wild-type ancpin3 mutant
roots. The gravitropic reaction is believed to be reguldigdhe hormone auxinpin3
mutants are deficient in the PIN3 protein, which is essemtigihe transport of auxin in
the root tip. Through comparison of the reaction of wildeygndpin3roots, it was shown
here that the gravitropic reaction is not solely regulatg@uxin, so that other regulation
mechanisms need to exist.

Finally, transport equations were found, which descrileatthnsport and assimilation
of CO, in leaves. Using gas-exchange and chlorophyll fluorescemeasurements, the
homogenized lateral diffusion coefficient of leaves waseined. Moreover, the strat-
egy behind the existence of lateral diffusion in leaves wasugsed (plants differ in the
porosity of their leaves).

Throughout the work presented here, it became clear houifetmus the application
of transport equations in biology is. The importance of antitetive description in biol-
ogy became also clear. Everyday new questions arise ingyiokn answer to these may
only be found using an interdisciplinary approach.



Transportphanomene in pflanzeninternen Prozessen:
Wachstum und Transport von Kohlendioxid

Zusammenfassung

Ziel dieser Arbeit war die quantitative Modellierung vongsizeninternen Prozessen. Die
Modellierung des Wachstums von Zellen und Zellverbundeneivees der zentralen The-
men der Arbeit, aber auch die Modellierung des lateralemSparts von Kohlendioxid
(CO,) in Blattern wurde behandelt. Diese Prozesse werden inftinde durch Wasser-,
Hormon- bzw. CQ-Transportflisse gepréagt, weshalb zur Modellierung passénans-
portgleichungen gesucht wurden.

Basierend auf den in der Biologie wohlbekannten empirisdbeckhart-Gleichun-
gen, die das Wachstum einer gesammten Zelle beschreibetteminergie- und Masseer-
haltungsgleichungen gewonnen, mit denen lokale Wachstwster in einer Zelle be-
stimmt werden kdnnen. Diese Gleichungen wurden dann exaisgih fur eine spharische
Zelle nummerisch gel6ést und die gefundenen Muster diskuti@nschlieend wurde
gezeigt, dass diese Gleichungen tatsachlich eine konwskrweiterung der Lockhart-
Gleichungen darstellen.

Pflanzenorgane, wie Wurzeln und Hypokotyle, weisen raumalind zeitliche Wachs-
tumsmuster auf. So ist z.B. die ortliche Verteilung von Waah in Wurzelspitzen von
einer glockenférmigen Verteilung entlang des Organs ggprBieses eindimensionale
Wachstumsmuster wurde hier anhand des Transports von zpeitetischen Phyto-
hormonen und der Lockhart-Gleichungen beschrieben. Dibgpothetischen Hormo-
nen wurden Auxin- und Cytokinin-ahnliche Eigenschaftegaien (zwei der wichtigsten
Pflanzenhormone), womit das Modell einen pflanzenphysietbgn Bezug behalt.

Wurzeln und Hypocotyle weisen nicht nur eindimensionalechNg&umsmuster auf,
sondern konnen Krimmungs- und Windungsprozesse aufweigem Falle von Tropis-
men (Gravi-, Hydro- und Phototropismus). Obwohl diese Esee schon lange in der
Biologie bekannt sind, gibt es keine zufriedenstellendeal3® zur Charakterisierung
ihrer Produktion. Anhand einer Krimmungs- und Windungakungsgleichung wur-
den hier solche MalRe bestimmt und exemplarisch an einerackiafi Modell der grav-
itropen Reaktion von Wurzelspitzen getestet. Daraufhindewieses Mal3 verwendet,
um die Gravitropismus-Reaktion vdkrabidopsis thaliangL.) Heynh. Wurzeln (Wild-
typ undpin3 Mutanten) zu charakterisieren. Das gangige biologischeeéMaler grav-
itropen Reaktion von Wurzeln geht davon aus, dass diese vitanzBénhormon Auxin
reguliert wird. pin3 Mutanten produzieren das fur den Auxintransport wichtigetétn
PIN3 nicht. Damit gelang es hier zu zeigen, dass die Reakiicint nur ausschlie3lich
von Auxin reguliert wird, sondern auch andere Regulaticedmnismen vorhanden sind.

Abschlie3end wurden Transportgleichungen zur Beschngilules Transportes und
der Bindung von CQin Blattern aufgestellt. Anhand von Gaswechsel- und Clployd-
fluoreszenzmessungen wurden dann der laterale homogtniBi§usionskoeffizient in
Blatter bestimmt und die Vorteile von lateraler Diffusidir flas Blatt diskutiert.

Im Allgemeinen zeigt sich, wie fruchtbar die Anwendung vaanisportgleichungen
in der Biologie ist. Vor allem wird aber klar, wie notwendige quantitative Beschrei-
bung in der Biologie geworden ist. Tagtaglich entstehererf@agestellungen, die einen
interdisziplindren Ansatz bedurfen.



Preface

All movement is accomplished in six stages,
And the seventh brings return

The seven is the number of the young light
It forms when darkness is increased by one

Syd Barrett 1967

The purpose of this manuscript is to present the use of teaheguations in
models of plant-internal processes and to point out pasdililire applications
of this concept. The manuscript is focused mostly on cell imrad growth, al-
though an application in CQtransport is also presented. Chapter 1 gives a short
introduction into transport equations and why these aremapt in plant biology.
Chapter 2 presents an application of a binary-mixture parisquation to model
cell growth and to obtain subcellular growth patterns. Iragtier 3 a model of
growing root tips, controlled by the transport of two phytomones, is assem-
bled. Chapter 4 presents a new measure of curvature produetcurving organs
and a simple model of the gravitropic reaction of roots. Efewlings are then ap-
plied in Chapter 5 to characterize the gravitropic reactibArabidopsis thaliana
(L.) Heynh. roots. This reaction is believed to be mediatgdréansport patterns
of the phytohormonauxin so that Chapter 5 can be understood as a sound basis
for future modeling of the gravitropic reaction using trpog equations. Chapter
6 applies a simple COtransport equation to determine the effect of lateral dif-
fusion on heterogeneous photosynthetic assimilatiorepwdtin leaves. And at
last, Chapter 7 presents some conclusions and perspefttives throughout this
manuscript.

The author wishes to thank Prof. Willi Jager (Universitaidédberg) and
Prof. Ulrich Schurr (Forschungszentrum Jilich and Univ@russeldorf) for
making it possible to work on this manuscript. | also woukelto thank heartily
all the members of th&rowth Groupof the ICG-IIl (Forschungszentrum Julich).
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Chapter 1

Introduction

Transport equations have an established position in eegimemodels, such as
in combustion problems, pollutant distribution, (chemigaactor modeling and
many more. However, biological systems have not been ttest¢hourough and
experience recently more attention. In plant biology, tieaediffusion systems
are enjoying recent interest (e.g. Chavarria-Krauser arair® 2004; Roussel
and Roussel 2004; Chavarria-Krauser et al. 2005; Swardp22@b6; Galloét and
Herbin 2005; Prusinkiewicz and Rolland-Lagan 2006; andymaaore). In future,
transport equations will have even a more important rolelant Physiologyand
Molecular Biology

Biological systems, either cells or tissues, can be treategorous media
in which flow, reaction and diffusion occurs. Cell walls anémbranes have a
complex structure full of either non-tightly packed midrostures or specialized
transport channels. Thousands of compounds travel in thplsgt and apoplast
including signal relevant phytohormones. Hence, planebigament and function
are determined essentially by these processes. Actuadlgy mlant processes,
such as photosynthesis and growth, rely on specializedpgmahsystems (xylem
and phloem transport, but also polar auxin transport). dyewith the first mul-
ticellular plants transport systems had to be established.

The manuscript presented here aims at demonstrating apphicof transport
equations on plant growth and photosynthesis related gasgort. The set of
equations applied here can be generalized as species atimeequations (Gio-
vangigli 1999)

Opr + div (ppv) + divFy =mpwr, keS (1.2)

wherepy, is the mass density of the k-th speciess the mass average flow veloc-
ity, F is the diffusion flux of the k-th speciesy, is the molar mass of the k-th

1Apoplast: the medium outside a cell membrane, e.g. the wdedlevall structure of a tissue.
Symplast: the cell’'s inside.
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specieswy, is the molar production rate of the k-th specigss the set of species.
Depending on the treated problem, several simplificatidr(¢.4) are used. For
example, Fick’s empirical law for the diffusion flux is a frgent approximation

Fro=—-pDi"VY,, kes, (1.2)

wherep is the total densityD;*” is the apparent diffusion coefficient of the k-th
speciesy; is the k-th species mass fraction. However, the treatmesurok cases
needs a more complex diffusion flux than (1.2), such as inrgalain transport
(Chapter 3).

The chemical reaction terms, w;, wherek € S, need also to be adapted
to the biological problem. Because not necessarily all igjge&nd reactions are
known or want to be modelled, the set of spectess reduced to a minimum.
Hence, production rates may become functions of the speoigsentration, e.g.
in CO, assimilation (Chapter 6). Eqg. (1.1) will not always be userkhin the strict
sense of species conservation. For example, in Chapter 4sumeeof curvature
production in curving organs is sought for, and based on\aatuire conservation
equation.

Mathematical modeling of plant processes should alwaykeVand in hand
with biological models. This implies the use of physiolajiparameters to allow
a clear and straightforward interpretation. Integratibmathematical and biolog-
ical models is challenging. The work presented here shauttiloss understood as
a basis for further developments.



Chapter 2

Cell Growth Model

2.1 Introduction

All plant tissues consist of cells. It is thus not astonigttimat growth and devel-
opment of a tissue is given by growth and divisions of singlésc To understand
tissue growth, it is essential to have a clear picture of giestructure. We will
see below, that the cell structure determines how cells.grow

Plant cells differ substantially from animal cells. Prolyaihe most outstand-
ing differences are the presence of cell walls, vacuolespdastides (Fig. 2.1
A). Cell walls supply rigidity and are composed mostly oflgklse microfibrills
interconnected by xyloglucan and arabinogalactan madscillittge and Kluge,
2002). This microstructure of the cell wall results in a céicaied mechanical
behavior of cell walls (Cosgrove 1992; Niklas 1992). Vaasotompose up to
90% of the volume of mature cells, and are mainly inorganic Saltsater. The
high osmolarity of the salts produces a high osmotic presgside vacuoles.
Here one of the largest differences between plant and amietlalbecomes clear,
plant cells have a high internal pressure denomingiegbr (Fig. 2.1 B). The
turgor of cells assumes normally values betwéen)M Pa and1 M Pa.! This
high pressure is possible due to the rigid cell wall surrangthe cell. Beside the
cell wall, the pressurized vacuoles are perhaps one of tls¢ important agents in
cell expansion. There are several types of plastides irt p&ls, the most charac-
teristic ones for plants are chloroplasts, which are resiptefor photosynthesis.
Another type of plastides are the amyloplasts, found mamhon-photosynthetic
tissues, such as roots. These are used for starch storag&srash important role
as sedimentation bodies in root gravitropism.

11 M Pa is approximatelyl 0 bar .
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Plastids:
A amyloplasts

Vacuole

—
Pressure force

Cell wall Mitochondria Water influx

Figure 2.1: A, Simplified scheme of a plant cell. B, Water influx and
turgor pressure build-up in cell.

2.1.1 Cell proliferation and growth

Tissues develop through the coordinated interplay of tvoxgsses: cell expan-
sion and cell division (Beemster et al. 2003; del Pozo et 8052. However,
tissues do not have to be packed densly and may have intéacedpaces, which
may compose a substantial part of the tissue volume (e xgedeeefer to Chapter
6). Depending on the tissue, age and position, one or the othg dominate.
Division of plant cells is similar to the division of animatits. However, in plant
cells the primary cell wall has to be synthesized betweerdti@icated nuclei
(Luttge and Kluge 2002), so that a high polarity of cell diwisis found. Roots
show in particular a strong polarity in cell division, as mdwisions occur in the
plane perpendicular to the root aX{&ig. 3.2 page 24). Cell division is coupled to
growth, else the dividing cells would constantly lose si¢eung cells have small
vacuoles, so that cytoplasm composes most of their volunge 1 A). Thus,
growth due to cell proliferation is mainly due to cytoplasrogiuction, in contrast
to cell expansion, which occurs mainly due to water and rasitient uptake of
the vacuole (Fig. 2.1 B; Brumfield 1942).

2.1.2 Measure of growth

Several measures have been used to characterize growtblogyai absolute
change in length or area, rate of change of length or areahenektative growth

2Divisions parallel to the root axis are found in the apicaristem and are the basis of the
different cell lineages.
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rate (RG R). However, thekRG R has been the most fructiferous in the characteri-
zation of leaf and root growth (e.g. Erickson and Sax 1956¢Hard et al. 1993;
Schmundt et al. 1998; Walter et al. 2002), and is from a magtieal point of
view the most reasonable. Moreover, a thermodynamic apprtaelucidation

of the cell wall expansion rate, has shown that @R is independent of cell
dimension (Section 2.2; Veytsman and Cosgrove 1998). HA& is defined as
follows

whereJ is a measure, e.g. cell length, area or volume. Roots andcbyde
grow almost unidirectional, therefore the cell length isdi$or characterization
of their growth, while leaves expand areally, so that the &esuited better. This
definition of RGR allows a very simple average method, becauseRb&R is
given by a total derivative:

17 1 J(T)
RGR = = /0 RGRAt = = In (W) : (2.2)

Eq. (2.1) can be generalized into n-dimensions. Assumiagdlowth is a
flow generated by the vector fieldx, ¢) : R* x R — R", i.e. d;x = v(x, t), the
RGR can be related to the divergence of the vector field:

RGR =0;InJ = divv, (2.3)

This was probably shown more thab0 years ago by either L. Euler or J. L. La-
grange and is equivalent to the equation of continuity foremasure-preserving
flow (Gerlich 1991).

In the biological literature a distinction between relatelemental growth rate
REGR and relative growth rat&G R is done. These differ in the dimension of
the vector field they work onR EGR is used in 1D whileRGR is used in 2D
and 3D. Throughout the work presented here we will not foltbis convention
strictly, as the definition in Eq. (2.3) does not depend ondimeension and a
distinction seems unnecessary.

2.1.3 Wall extension and water uptake

In the last decade new insightinto cell wall extension wasegh(see e.g. Pritchard
1994; Cosgrove 2000). Several controlling factors have lbeend, e.g. the wall
proteinsexpansinsbut the complete mechanism and control mechanisms of wall
extension are still unknown. It is up to date unclear howscedin extend tenfold

or more without their wall losing stability. The general apted model of cell
wall expansion is that extension occurs through wall loosgeand confirmed cell
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wall production — otherwise cell walls would become thinwéh expansion. The
osmotic pressure in the cell produces a tension on the wgll 271 B). A creeping

condition is then achieved through cell wall yielding (Lbekt 1965; Cosgrove
1986; Cosgrove 2000).

Extension growth is composed of two overlaying processesemuptake and
cell wall yielding. While turgom is increased by water uptake, cell wall yielding
tends to decrease it. It becomes evident, that dependingeowater influx and
cell wall yielding, a certairp is established in the cell (Fig. 2.1 B).

Lockhart (1965) proposed the following empirical equationthe elongation
rate of cells

dl=1lop(p-Y), (2.4)

wherel! is the cell lengthg is the wall extensibility and” is the yield thresh-
old. Many measurements support Eq. (2.4), although sometdd&dee Cosgrove
(1992) for a discussion on this issue. The discrepanciesbeajue to the vary-
ing interpretation of growth rate and to different measwatmethods. Pritchard
et al. (1990) and Pritchard (1994) showed that growth of &section fulfills Eq.
(2.4).

The cell can be described as a simple osmometer, water uigtéthen given
by

dt‘/ol = _As Lp (ws + p) ) (25)

whereV,, is the volume of the cell4; is the area of the cell surfacs, is the con-
ductivity coefficient and), is the osmotic potential (see Lockhart 1965; Cosgrove
1986; Cosgrove 1993; Nobel 1999).

For simple cell geometries, e.g. cylindrical, both Egs.4Yand (2.5) can
be related. A cylindrical cell of base areg perimetera; and length/, has the
volume and surface area

Voo = aol (2.6)
As = 2&0—}—&1[. (27)

From Egs. (2.4) to (2.7), an expression for the “workinggturis found

o ‘/oléy - As prs

- Vo4 AL,
Lockhart (1965) and Cosgrove (1986) found similar expmassi If we solve Eq.
(2.5) for turgor pressure, insert it into Eq. (2.4) and use.H@&.6) and (2.7), an
expression for the growth rate can be calculated

(2.8)
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AL (YY)

d¢l =
' %l¢+Ast

(2.9)

Eq. (2.9) shows that the elongation of a cylindrical cell elggs directly on
the osmotic potential and the yield threshold, but not ortiingor. As mentioned
before, the turgor assumes a certain value for given exigitgip and water con-
ductivity L, [Eq. (2.8)]. As in the case of the pressure in fluid dynamidsictv
Is a separation variable between the momentum and the massreation equa-
tions (Landau and Lifschitz 1991b), the turgor is the sejpamavariable between
the “mass” conservation Eq. (2.5) and the “momentum” corsgemn Eq. (2.4).

Cells in a tissue are interconnected with a pectinuous |ayet can thus not
slide against each other. The wall of a mature cell is congha$ehree mayor
layers: primary, secondary and tertiary cell wall (Luttgpel &luge 2002). Each
of these layers is composed by themself of countless thersagf cellulose and
different incrustations. Throughout the extension precasw cellulose material
is deposited continuously on the inner side of the wall, st tihe outmost layers
are simultaneously the oldest (Niklas 1992). The orieotatif the microfibrills
determines the direction of growth. These change duringesipn their orien-
tation angle, which becomes shallower relative to the cedl during maturation
(Pritchard et al. 1993). Here again a strong polarity of gedwth is found. Al-
together, we conclude that Egs. (2.8) and (2.9) can only bghrapproximations
of cell growth.

2.2 Modeling cell growth

In Section 2.1 we saw that growth of a cell can be describedbyetjuations, one
representing the mass conservation and the other the momemtenergy con-
servation [Egs. (2.4) and (2.5)]. We would like to deriveénlercal expressions of
these equations.

2.2.1 Mass conservation

The simplified cell model used in this section is given by d icelide Q2(¢) and

a cell wall2,,(¢) that includes the plasma membrane (Fig. 2.2). In this sectio
we present the conservation equations and boundary comnglitivolved in water
uptake of cells. In Section 2.2.3 we will show that these &qua simplify into
the well known osmometer equations proposed by Lockhar5196
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Species conservation

The conservation of non-reactive species is expressedebyethof equations
(Giovangigli 1999)

QW Opr + div (ppv) + divFr =0 (2.10)

wherek € S, p; is the mass density of

the k-th speciesy is the mass average

flow velocity, F,. is the diffusion flux

of the k-th species and is the set of

species. Instead of the mass density,
" the species mass fractions

_ P
Figure 2.2: Simple cell model. 2 com- Yi= P kes,

poses the cell inside and,, the cell wall. _ )
The boundaries]’ = T',, andT?*, and the C&n be used. These satisfy the relation

corresponding normal vectors= —n,, are Y_xcs Y = 1, Which follows from the
shown. definition of the total density

P:ZPk-
kes

The mole fractions are also used to describe the distribaiigpecies

X, = ﬁ Y. , keSS s
my
wherem is the average molar weight of the mixture angl is the molar weight
of the k-th species.

Summation of all species conservation equations (2.10yets| using the
mass constraint (Giovangigli 1999)

> Fr=0, ke, (2.11)
the total density conservation equation

Op+ div(pv) =0. (2.12)

The diffusion flux F, of the k-th species, in absence of large temperature
gradients, is given by

Fr=-) Cudy, k€S (2.13)
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whereCy,, k,1 € S are the multicomponent flux diffusion coefficientk, is the
diffusion driving force of thek-th species

d, =V (Xp)+ (Xp— V) Vinp, keS. (2.14)

Eq. (2.14) is valid only when external forces, if at all pr&seact equivalently on
all species. The diffusion flux can be used to define a spedfesidn velocity

Vk:ﬂ, keS. (2.15)
Pk

These obey, similarly to th#&,s, a mass conservation constraint

Pv:Zkak:Zka:O;

kesS keS

which means that diffusion does not produce a mass averagedlocity.

Water uptake

The diffusion forces (2.13) can be simplified considerabjyyconsidering the
structure of the cell. Inside the cell(t) the pressure gradient can be assumed
to be small, as it would produce a flow of a viscous fluid and waldcrease in
strength promptly. This means thatG{¢) local growth can be assumed to be
mostly driven by concentration gradients. Note that thisrik a rough approx-
imation. Acytoplasmic flows present in cells. This flow is particularly evident
and strong in cells of th€haraalgae, in which a velocity of up t&6 cm h~! is
found. This flow occurs, however, in the cytoplasm and nohimvacuole and
can thus be neglected. In the cell wall/membr@ét) the pressure gradients can
assume considerable values (pressure oufsid®/ Pa, inside0.5 to 1 M Pa), SO
that these two cases must be treated separately.

Cell inside

We approximate the solution in the vacuole as a binary mexadrwaterit and
an osmotically active compourd (i.e. S = {W,C?}). The diffusion velocities
can be approximated by Fick’s empirical law (GiovangiglD29

fk:pkvk:—pDZpVYk, /{ZESI{W,C}, (2.16)

where D;” denotes the apparent diffusion coefficient of #héh species. The
diffusion coefficients are not independent, because thedlirave to fulfill the
mass constraint (2.11). A simple calculation based @i+ Yo = 1 shows that

D := D% = D¥ . (2.17)
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Only one conservation equation is needed to describe th#gman()(¢), as the
mass fraction of e.g. the water can be determined thraggh= 1 — Y. The
effect of water inflow is then taken into account throughadig boundary condi-
tions applied to the compound’s problem.

Taking in mind that inside the cell no pressure gradient esent and that
pure diffusion does not produce an average mass flow velgeity: YV = 0),
the transport term in Eq. (2.10) is zero. Using the contineguation (2.12) and
v = 0, a short calculation shows that the density does not deperithe, i.e. it
is only a function of the spatial coordinates. We assume thexieno initial gra-
dient in density was present, i.e.= const. The species conservation simplifies
substantially

@YC —D AYC =0, in Q(t) R (218)

whereD = const and Fick’s law (2.16) were used. We have to mention therte
although the problem assumed a simple form of a diffusioragqgn, it is posed
on the time dependent domdirt). This difficulty can be by treated by introduc-
ing material coordinates.

We introduce the material velocity, defined inQ(¢), and choose it so that it
corresponds of(¢) to the velocity of the boundary. Applying mass conservation
on the boundary, an expression for the boundary velocityuad

pvi-n=—jit-n, on ().

wherejit. is the water flux into the cell andl is the normal vector of2(¢) bound-
ary. To obtain an expression of in Q(t), we use

j%.n:_’FW—n:—}'C-n:pDVYC~n, on F<t) (219)

and define the material velocity ia(t) as

vy :=—DVYo =YV . (2.20)
This allows to define a suitable material derivative

Djo:=0,0+v,-Vo . (2.21)

Using the diffusion equation (2.18), the boundary condit{@a.19), the ma-
terial velocity (2.20) and the material derivative (2.2the species conservation
problem obtains the following form

DtYC+DVYC~VYC—DAYC = 0, in Q(t),

pDVYs-m—jn-n = 0, on I(t). (2.22)
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Growth

The rate of change in volume of a time dependent dorfirin is determined
through the Reynolds-Transport formula (compare e.g. @ta@mi et al. 2000):
for any differentiable functiog defined on a time dependent domgift) we find

ds Sdxr = o0& dx + / vy -ndy, (2.23)
Q(t) Q(t) I'(t)

wherev, is the velocity of the boundary. Using Eq. (2.23) witk= 1 we find

AV, = dt/ dx = / vy -ndy = / divvyde = RGRdx, (2.24)
Q) T(t) Q(t) Q)

where the general definition &G R (2.3) and Gauss’ Theorem were used. The
boundary velocity has to be continued ifit¢¢) by a meaningfully defined vector
field, i.e. one that is able to represent local growth and daé ¢ontinuously
assumes the boundary velocity. Above such a continuatisriauend [Eq. (2.20)],

so that a local expression for growth is

RGR=—-DAYs, in Q). (2.25)

As we will show later in Section 2.2.3, Eq. (2.5) follows fraig. (2.25) by aver-
aging over the cell volume.

Cell membrane

Problem (2.22) allows the determination of the compounttitligion in2(¢) and

Eq. (2.25) gives a measure of the local growth. However, thierfluxji. is still
undetermined and depends on the sum of all concentratioosnodtically active
substances inside and outside the cell, respectivelydértsie cell we assumed
that the pressure gradient is small. Nonetheless, in tHevedlfmembrane the
pressure gradient is relevant for water transport. Insbéading Fick’s law (2.16),
the water fluxFyy, in Q,(t) can be approximated by an extended law (Chavarria-
Krauser and Jager 2005)

Fw=-pDVYy —pKVp, (2.26)

whereD and K are the diffusion and barodiffusion tensors in the memhrahe
plasma membrane has a complex structure, composed of alipsg bilayer
resulting in an hydrophobic region sourrounded by two hgtirlc regions (Taiz
and Zeiger 1991). This prevents water diffusing easilydiyethrough the mem-
brane layers. Although the transport coefficient of watestlgh the membrane is
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small, it can be large enough to guarantee supply. The ddtallind membrane
water transport are still not known. Specialized proteiregoamedquaporins
have been determined recently, but their exact functiotilisiaknown (Maurel
1997; Nobel 1999; Tyerman et al. 1999). Therefore, tenkdiffasion and baro-
diffusion coefficients may be needed. Here, we assume that wansport occurs
only normal to the boundaty,,(¢), i.e. D = Y n, ® n,, andK = # n,, ® n,,
whereZ, .# € R andn,, is the normal vector of,,(¢). The species conservation
demands that the fluxes through the inner pait gft) andI'(¢) must be equal

jit =Fw=—pPVYyw —p A Vp, on [,t). (2.27)
Due to the complex structure of the membrane, the deteriamaf the pres-
sure and water concentration gradients is not trivial. He@rethese can be ap-

proximated by the difference in values between the innerthaduter sides of
the membrane (Nobel 1999)

Yiy —Yigut o e

VYvW ~ h n, = A ny ,

~ p—p°“
Vp ~ h 1y, ,

on I'y(t),

where h is the thickness of the membrane. Altogether renders thervwkitx
approximation

“in ou 9 ou
jw=—pL, (p —p™ — %(YC - Ye t)) n, , on I'y(t) (2.28)

where L, = % /h is the water conductivity coefficient. It should be kept in
mind that the normal vectors @f(¢) andT",(¢) show in opposite directions, i.e.
n,, = —n. We should also mention here tHat(¢) was represented in a strongly
simplified manner. The osmotic active compounds are stordeeivacuole of the
cell, which is surrounded by a membrane separating it fraanctftoplasm. The
cytoplasm itself is contained in a protecting membrane,pllasma membrane,
and the cell wall which spends rigidity to the whole complesd Fig. 2.1)I",,(t)
contains all these layers, so thatand.#” have to be understood as the average
transport coefficients over the entire composite.

Example

In this section we would like to present an example of a sphécell suspended in
water. We assume that the pressure in the water is small gechpmathe turgor in
the cell p°* ~ 0) and that no compound is dissolved in the waiét{ = 0). The
deformation of a pressurized hollow spherical body withia thall and vanishing
outside pressure is given by (Landau and Lifschitz 1991a)
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Figure 2.3: Modeled mass fractioi during turgor recovery of a spherical cell
with loose cell wall(A = 10~* m M Pa~!). Data visualized by cutting the sphere

at the equator and subsequently colorcoding the valuesowBttle colorcoded
images, the radial dependence is shown.
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Figure 2.4: SimulatedRG R during turgor recovery of a spherical cell withose
cellwall (A = 10~* m M Pa~"). Data visualized as in Fig. 2.3.
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Figure 2.5: Simulated mass fractiori> during turgor recovery of a spherical cell
with stiff cell wall (A = 10~7 m M Pa~!). Data visualized as in Fig. 2.3.
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Figure 2.7: Recovery of cell turgop in spherical cells of loose and stiff
cellwall (A = 107* m MPa~! and\ = 1077 m M Pa™'). Initially, the
cell had a turgor ofpy = 0.4 M Pa and an osmotic potential af? =
—0.5 M Pa.

R*(1-o0)
2Fh
whereu is the radial deformation? is the initial radius¢g is Poisson’s ratioF is

Young’s modulus of the material and:= Rz(];”) = const. Using (2.19), (2.20),
(2.28) and the time derivative of (2.29) we find an ODE deseghhe pressure

U=y =pA, (2.29)

dp = =3 (p+v) ., for t>t, (2.30)
p = Do, for t= to .
wherey, = —% Y¢ is the osmotic potential. This equation allows togethehwit

Problem (2.22) the determination of the concentrationrihistion Y- and the
pressure. We introduce therefore spherical coordinatdsaseume that; is
only a function of the radiu¥. = Y (r). We obtain the problem

D Yo+ D (87«}/0)2 —D TLQ Oy (7’2 8TYC) = 0, for 0<r< R+ u(t) ,
oYe = 0, for r=0, (2.31)
Yo -t (pry) = 0, for r=R+u(t).

Problems (2.30) and (2.31) do not suffice to describe the preqgosed prob-
lem, as the domain and hence- r(¢) depend on time. A geometric assumption
is needed to solve thisee boundary problemIn the here presented case, we
included this assumption by using a spherical cell at alesmHowever, (2.31)
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Table 2.1: Simulation parameters for cell turgor recovery. Poisson’s
ratio o and Young’s Modulust vary considerably, the values ob-
tained for onion cells (Wei et al. 2001) and wood (Vogel 1988)e
taken to estimate the dimensionaf

Cell wall R o E h A L,

(um) (M Pa) (um) (m MPa™') (ms*MPa™t)
loose 100 0.2t00.3 3.5t08 ca.l 107 1076
stiff 100 ca.0.3 ca.15x10® ca.l 1077 107¢
Initial conditions ¢ (M Pa) py (M Pa) Q

—0.5 0.4 Br(0)

is still posed on a time dependent domain. A numerical smhutan be obtained
by using Lagrangian coordinates (i.&; — 0;) and solving the resulting dif-
fusion equation. This implies, however, that special care to be taken during
the numerical treatment of the problem. Using a finite déffere approach on
a non-uniform discretization is reasonable due to the smpplementation and
the simplicity of the problem. To obtain the discretizati@ina certain point in
time, the initial uniform discretization is deformed in &by assuming that the
deformation is produced by a flow of velocity

dix = =L, (p+vs), xe€Qt) and t>t,

2.32
X = Xg, X()GQ() and t=tg. ( )

After exchanging the spatial derivatives by suitable disedifference oper-
ators for non-uniform discretizations (Gromann and R&894), Eqs. (2.30),
(2.31) and (2.32) can be solved using an explicit Euler-8whe

Two examples were simulated, one of a loose and the othertdf eedl wall
(Figs. 2.3to 2.7). The corresponding parameters are showable 2.1. Mea-
surement of Young’s modulus and Poisson'’s ratie for cell walls is not trivial,
we therefore approximated roughly the coefficienFor the loose wall the values
found for onion cells were used (Wei et al., 2001), while thkies of wood were
used for the stiff cell (Vogel 1995).

Both cells recover their turgor up to a certain value, whiepehds strongly
on the stiffness factok (Fig. 2.7). The cells differ in the rate of turgor recovery
and in the value reached after recovery. As expected, tiesli reaches much
sooner full turgescence than the loose cell. It grows therebch less, clearly
shown in the higher turgescence and low dilution/gf(Fig. 2.7). As a conse-
guence of growth and hence dilution, the loose cell reactsegstantially lower
turgor (Fig. 2.7). It becomes here clear, that a cell wittskowall is in need of an
osmoregulation.

30Osmoregulation: regulation of the cell’s, in particulag tracuole’s, osmotic potential. There
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The compound distribution and the growth distribution agesthe cell brings
more insight into the differences between the stiff and éooslls (Figs. 2.3 to
2.6). The compound in the loose cell is slowly diluted frora Boundary towards
the center, until almost a constant curvature of the radsalidution is found (Fig.
2.3). This is clearly reflected in theG R distribution (Fig. 2.4), which moves al-
most as a wave from the boundary into the center and becomety shimost
constant along the radius (c&. % h~! att = 1.6 s). Nonetheless, the region
near the boundary starts slowly to grow less than the cetter{ s, Fig. 2.4),
and the cell diminishes overall growth. The stiff cell shaavdifferent recovery
pattern (Fig. 2.5 and 2.6). As in the case of the loose calctdmpound is diluted
from the boundary towards center. However, the radial camgddistribution
does not reach an almost constant curvature. An increasegeatration in the
region near the boundary, due to the fast pressure incrsdseind instead (Fig.
2.5). TheRGR distribution shows this behavior more clearly. The growtbves
from the boundary towards the center, as for the loose cele © the increas-
ing pressure (Fig 2.7), less water can enter the cell andtgroear the boundary
loses strength. There is even a certain critical time, whegative growth near
the boundary is foundt (> 0.12 s, Fig. 2.6). This is explained by the strongly
reduced water influx, resulting in the boundary tending selwater in favor of
more central regions. The negative and positive growthaggr zero, when the
cell stops to grow.

2.2.2 Energy conservation

Energy conservation states that the rate of change of mitenergy of a bod{.,,
is given by the sum of the work done by or on the body per unietand of the
rate of heat exchange (Landau and Lifschitz 1987). This eagdmeralized for
continua by using the energy density

dtg = dtR + dtQ 5 (233)

whereR is the work density and is the heat density. The enerdy of the
complete body is obtained through integration of the dgrwier the domairn2,,

E:/ Edx .

Eq. (2.33) can be used to determine the rate of cell wall esipar(Veytsman
and Cosgrove 1998). This is achieved by assuming that cdlllexpansion is
due to creeping of the wall. Creeping occurs when the stglaidindition for the
volume dependence of the pressure is not fulfilled, i.e. vvgﬁnz 0 (Landau

are several choices of how this can be achieved, e.g. ionsfl@senotic activation of a compound
by chemical reaction, etc. (see Kauss 1978 for algae).
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and Lifschitz 1987; Veytsman and Cosgrove 1998). If theiremergy of the cell
wall is assumed to be constant during creep, the rate of sigrars determined
solely by the work ratel,;R and the viscous dissipation of energyQ. Expan-

sion changes the inner structure of the cell wall, e.qg. tlygeanf the microfibrills

changes in relation the the cell axis (see Section 2.1). Aghaf inner structure
is accompanied by a change of inner energy, which is cowttstdy deposition
of new cell wall material. The above assumption of a constamtr energy, is
therefore only a rough approximation to cell wall expansion

Deformation work

The work per unit time achieved by a deformation of a bexlyis given by (Lan-
dau and Lifschitz 1991a)

/ d;Rdx = / dive - dsuder ,
Qu Qu

whereo is the stress tensbandu is the displacement. Adiv o is the force
acting on a differential volume and,u is the displacement per unit time, this
eqguation is the continua version of the simple lawk = force x displacement.
The integrand on the left side can be transformed into a tht@rgence and a
correction term

dive - dju = div (ou) — o : Vdu,

whereA : B = Zm‘ A;; Bi; and(Va)ij = 0,a;. Because the stress tensois
symmetric,Vd,u can be symmetrized to obtain the time derivative of the strai
tensord, Vu = d,e.> We find altogether for the work per unit time

/ dﬂzdx:/ P~dtud7—/ o:diedr. (2.34)
Qu T, urgut Qu

whereP = on is the force per unit area acting or),. The first term on the right
of Eq. (2.34) represents the work achieved by the extermeé$y while the sec-
ond term represents the work done by the stresses ifside

Energy dissipation

Cell wall expansion is connected to energy dissipation dubé viscosity of the
cell wall and to the finiteness of the expansion velocity. Eorall expansion

4Because the stress tensor is designed heke agd Poisson’s ratio by, no danger of mis-
taking them arises. Moreover,does not appear in this Section.

5The displacement and the strain tensor are defined in relatithe originak?,,, so that the
time and spatial derivatives commute.
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velocities, the energy dissipation due to internal frictoan be approximated by a
dissipation functior{Landau and Lifschitz 1991a), which is a quadratic function
of the rate of deformatiod,;e. The dissipated energy is

Rais dx = / die :m: dede, (2.35)
Qw w

where the fourth order tensgris the viscosity tensor, which fulfills the symmetry
conditions

(Miktm = (M) imix = (M) kitm = (M) ikomi -

If no other processes are involved in heat production, tteeachange of heat
and the rate of dissipation are eqda@ = —d; R 4.

Non-Equilibrium

In non-equilibrium under the assumption thRt = 0, the dissipated energy
equals the workd, R = d;R4s. Using Egs. (2.34) and (2.35) we obtain

/ (773dt5+0')3dt5d$:/ P - dyudy.
Qw

T, urgut
The term on the right hand side represents the work achieyéaebsurrounding
medium. For a pressurized cavity and a vanishing outsidgspre, the surface
forces areP = —pn,,, wherep # 0 for the inside ang = 0 for the outside
andn, is the normal ofl',,. This term obtains then the usual form found in
thermodynamics for an expanding gasp d;V,; (Landau and Lifschitz 1987).
The integral over the inner boundary can be converted intmtgral over the
inner medium

/ P~dtud7:—/ pnw~dtud7:/pn~vbd7:/div(pvb)dx,
w w r Q

wheren,, = —n andd;,u - n = v, - n onI' [compare (2.20)] were used. If the
pressure is assumed to be constant, the energy balancesobiollowing form

/ (n:dterO'):dtadx:p/RGRdx—i-/ P-dudy, (2.36)
Quw Q ot

where RGR = div v, was used [Eqg. (2.3)]. Eq. (2.36) has to be understood as
a method to determine the pressurein However, it becomes again clear that
a constant pressure is only a rough approximation. In yeadical variations in
pressure are expected due to the not necessarily congt@mi o. The second
term on the right of (2.36) models external forces. Thesee®may arise from
friction with the outer medium or from growing neighbor eellt represents thus

a connection to biomechanical modeling of the tissue. Heweliese forces have

to be determined, which is not straightforward for growiisgtes.
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2.2.3 Simplifications

The aim of this section is to show that the Lockhart Eq. (2m) the osmometer
Eq. (2.5) follow from Eqgs. (2.25) and (2.36) by using simpémmetric simplifi-
cations.

Water uptake

The average relative growth rai&s R of a cell can be obtained using Eq. (2.25)
and applying Gauss’ Theorem

S 1 1
RGR=— | RGRdr=—— | DVY¢-ndy

Vo Ja ol Jr

Using the boundary conditions of Problem (2.22) and the @ppration of the
water influx (2.28), we find

. AS
RGR = - L, (p—p" + s — ) | (2.37)
ol

where A, is the measure df, i.e. the surface area 6f, andy, = —% Yo was
used. In the intercellular spaces"’ andp®* can be assumed to be small. Using
4,V =V, RG R shows finally that Eq. (2.37) is equivalent to the osmometgr E
(2.5).

Elongation rate

If we assume a cylindrical geometry and a deformation aldwgcylinder -
axis), the strain velocity tensor reduces into a scalg)s;3 = d, Inl, wherel is
the length of the cylinder. Only one component of the vistlyomnd stress tensors
appear in the equation(n)ssss and (o )s3. Assuming that no forces act on the
external boundary?*, Eq. (2.36) reduces into

RGR=¢ (p—Y) , (2.38)
whereg = —L_ &l Y — #2e) (o)35 andpu(Q,,) is the measure db,,. Eq.

(2.38) is noﬁung else than the Lockhart-Equation (2.4)cHtart 1965). For a
cylindrical body with circular base of diametér and wall thicknes#, we find
1(Q) = T DhlandV, = I D*1, so thatV,;/u(Q,) ~ =. Eq. (2.38) obtains
then the form found by Veytsman and Cosgrove 1998.



Chapter 3

Root Growth Model

3.1 Introduction

Plants acquire essential nutrients and water through tbeis. It is thus not
astonishing that root growth serves as an instrument tacowes depletion of nu-
trients and/or water (Scheible et al. 1997). Root growtlhésefore of particular
interest for plant physiologists. Mechanisms essentiapfants, such asxten-
sion growth and tropisms such agavitropism hydrotropismandphototropism,
rely on both hormonal signaling and cell expansion (Cosgr®92; Perbal and
Driss-Ecole 2003; Eapen et al. 2005). It is also well knowat fhytohormones
control growth of plant organs by balancing cell prolifésatand differentiation
(Beemster et al. 2003; del Pozo et al. 2005). Thus, findingrenection be-
tween hormonal modeldquntain-model Chapter 5; Evans et al. 1986; Muday
2001; Perbal and Driss-Ecole 2003) and biophysical growtldets {ockhart
Equation; Chapter 2; Lockhart 1965; Cosgrove 1986; Pass@ud Fry 1992) is
a critical first step for an accurate model of root growth.

Two different characterizations of root growth are founglstem expansion
through branching and individual root elongation. Leadmtyvo different classes
of models, those describing the topology of root system (Bapes et al. 1989;
Fitter et al. 1991; Buckner et al. 1996; Berntson 1997), &odé which focus on
the distribution of growth properties of single roots, umting velocity, rate and
cell length (Goodwin and Stepka 1945; Erickson and Sax 18e@&mster and
Baskin 1998; Silk 1992; Pritchard et al. 1993; Evans et alD120/Valter et al.
2002).

The distribution of growth in primary roots has been tramhtlly measured

Lgravitropism tendency of a plant organ to grow either towards (positvedway from (neg-
ative) the gravity vector. Roots are positively gravitopihile hypocotyls are negatively gravit-
ropic. hydrotropism tendency for a roots to follow gradients of humidity in tloél sphototropism
tendency to grow towards or away from light sources.

23
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Figure 3.1: Relative elemental growth rat& #G R, and velocity distributions
along typical root tips of AArabidopsis thaliangL.) Heynh. and BNicotiana
tabacum(L.) (Data courtesy of Kerstin Nagel, Forschungszentruiicd)i The
guiescent center, a region of mitotically inactive cellsdted apically of the meris-
tem, was chosen as the frame of reference.
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using charcoal marks on the root surface (Erickson and &56)1 The position
of the marks are determined in time and IR&GR is calculated through one of
the Egs. (2.1) or (2.2). This method allows only a poor spatid temporal res-
olution. To obtain aREGR distribution, interpolating schemes on the positions
have to be used leaving a wide range of error in the resultistgilslition (Peters
and Bernstein 1997). New techniques with high temporal qadia resolution
have recently become available to quantify growth fieldd(®endt et al. 1998;
Walter et al. 2002; van der Weele et al. 2003). These tecksigqte based on im-
age sequences produced by CCD or CMOS cameras. Throughtémmawetion
of the movement of gray-value structures, the velocity mefield v(x, t) and the
REGR are approximated.

Root tips, independent of the species, show a typical bappetik G R pro-
file (Fig. 3.1 forA. thalianaandNicotiana tabacun{L.) root tips). The increase in
REGR along the root tip has traditionally been thought to be cardus (Morris
and Silk 1992; Sacks et al. 1997). However, the new techsiqg@i@digh spatial
resolution show a more or less const&twGR in the meristem and a sudden
transition into the elongation zone (Fig. 3.1; van der Wextlal. 2003), which
is supported by cell length measurements (Ivanov and Maxib®@9). This sug-
gests the existence of a critical condition to attain thaditgon into elongation
and a correlation between cell size and division rate in teeastem (Ilvanov and
Maximov 1999). As we will show later, this allows to obtain anoection be-
tween the division rate and the averd@®& G R in the meristem (Section 3.2.5).

Until now the approach to modétEG R distributions along root tips (Fig.
3.1) has been based on conservation and kinetic equatimisas those used by
Silk (1992). Empirical approaches, e.g. the use of a logf#ti have also been
used (Morris and Silk 1992). However, these approaches tifoooes on model-
ing the control of the elongation zone, but rather on charahg cell production
and expansion rates under different environmental canditi temperature, wa-
ter stress, nutrient availability, etc. Moreover, meck#aaiunderstanding of root
growth needs to take into account the architecture of thegoawth zone. The
root tip is comprised of the apical and basal meristem, tbeggtion-only zone
and the mature root (Fig. 3.2; Beemster et al. 2003). Mos$tdoakions occur
in the apical meristem, although some are also found in teallmaeristem. The
elongation-only zone is characterized by cell elongatmgst probably through
water uptake of the vacuole (Brumfield 1942), and almost mimlohg cell. In the
mature part of the root cells do not divide or grow to produoagation?

This work presents a novel approach to model these diswitgit The meris-
tem and elongation-only zone of a root (Fig. 3.2) is describg a one dimen-
sional string of cells. A cell is the smallest entity takemoimccount, i.e. the

2Cell division occurs in the mature root part mainly for segary growth and root branching.
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internal cell structure (cytoplasm, vacuole, plastides,; &eompare Fig. 2.1 on
page 4) will not be taken into account. Cell properties, sakREG R and phy-
tohormonal concentrations will be assumed to be homogeneside a cell. The
position of the cells is described by one spatial variabte R, which measures
the arc length between the cells and the quiescent céiitez. numberV (¢) € N
of cells in the string changes in tintedue to cell division. Cell death in this re-
gion is negligible resulting in a mortality rate of zero, \ehihe division rate, i.e.
the number of divisions a cell goes through within one haupasitive or zero.
The division process is assumed to be symmetric, i.e. thecelNs produced by
division are indistinguishable. This means that both déergtells have the same
length and undergo the same processes. Furthermore, weeadsat the length
of the tissue is not affected by cell division. Not only diwis affects cell length,
but also growth, so that each cell has a time-dependentHedegioted here by
lp(t), wherek = 1,... N(t).

In analogy to the known architecture of the root growth zddeefmster et al.
2003), we assume that cell division occurs at the end of tiregsof cells rep-
resenting the root tip (division zone), followed by a segtradrcells undergoing
elongation (elongation-only zone), resulting in a satarezone and finally a zone
of mature cells. We assume that the transition between titesses is determined
by a ratio functionv = w (¢1(z), c2(z)) € C°(R x R, R), which depends on the
concentrations; (x) andcy(z) of two hypothetical hormones. These hormones
were chosen to have auxin- and cytokinin-like propertidgese hypothetical hor-
mones are assumed to be produced as cytokinin and auxiniiodbhip and in the
plant shoot, respectively (Taiz and Zeiger 1991). Moregverse are assumed to
be subjected to degradation, dilution and cell-to-cehsgort, either of diffusive
or active nature. Throughout this Chapter, Latin indicesagsume values from
1to N(t), while Greek indices assume the valueand2. Timet will be given in
hours and minutesi(andmin), position inmm, cell lengths inum and concen-
trations inmmol m 3. The termsauxinandcytokininwill be used freely to design
the two hypothetical hormones. However, the reader shcegg kn mind that the
effect of auxin and cytokinin is too complex to be describethpletely, so that
the hypothetical hormones were chosen to resemble only séthe properties
of these two phytohormones.

3.2 Biophysical equations

We saw in Chapter 2 that cell growth can be described by twatems, corre-
sponding to mass and energy conservation. We saw also thatrtjor functions
as a separation variable between these two equations [Ed4$afd (2.5)], so that

3Quiescent center: region of mitotically inactive cellska toot tip (Fig. 3.2).
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it assumes a certain value depending on the wall extengihitid on the concen-
tration of solutes inside the cell [EqQ. (2.8)]. This allowesdbtain an elongation
rate that is independent of the turgor [Eq. (2.9)].

The connection between growth rate, wall extensibilignd turgom is essen-
tial to model correctly theR EG R distribution. A cell length depende®EG R
would change during cell division. For example, a linearedefenceREGR o [,
would result in halfREGR after a division. Such disturbances in the meristem’s
growth have not been reported (Ilvanov and Maximov 1999)gesiing a cell
length independen® £G R. Measurements of the velocity distribution along the
root show that the distribution in the elongation-only zdegends linearly on the
coordinate (van der Weele et al. 2003), so that the slopehed? EG R, does not
depend on cell length. Additionally, the Lockhart-Equatias been validated by
an approach describing cell wall creep (Veytsman and Cesgi898). We there-
fore use here the simplified versions as the underlying ceWth equations [Eq.
(2.37) and (2.38); page 22].

3.2.1 Approximations

Lockhart 1965 suggests that water conductivifyis not restricting for growth of
single cells. Although root cells compose a tissue and dadmmtreated as single
cells, this view is supported by measurements of tuggalong the root axis. If
water conductivity would be restricting, Eq. (2.8) impligstp would approach
the yield threshold” (i.e. lim;,_.op = Y). However,p in root tips has been
found to be substantially higher than showing that’, is not a restricting factor
in root tips (Pritchard et al. 1990; Spollen and Sharp 19%itciard et al. 1993).
In other tissues, e.g. leaves, water supply may be resgi(see e.g. Boyer 1968).

For non-restricting water conductivity, normal root cedlognetry and normal
cell wall extensibilityp, we find a small ratio of volume increase to water uptake
v := Vy¢/As L,.* Under this condition Eq. (2.9) simplifies, up to second order
in -, to

dil = =1 (s +Y) + 719 (s +Y) + 0(?) (3.1)

wherei, is the osmotic potential. Eq. (2.8) becomes

p=—vs+7s +Y)+0(7?) . (3.2)

4The assumption of a smajlis legitimate for all cells found in root tips: a young meeistatic
cell hasy ~ 10~°, while a cell located at the growth maximum has: 10~ and a mature cell
hasy ~ 0.
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The zero order approximation shows that tREG R is independent of the
surface to volume relation and independent of the water woindty. Addition-
ally, the turgor tends to reach the osmotic potential infiigecell in well-watered
conditions. The turgor has been found by other authors tamhstant along and
across the expanding region (e.g. Pritchard et al. 1990|e3pand Sharp 1991).
However, the first order approximation of the turgor, shohat this is rather
unlikely as the wall extensibility and the relation betwesnface and volume
change along the root axis. Additionally, the zero orderapimation shows that
a pattern in the osmotic potential is propagated into thgatudistribution. The
osmotic potential is known to change along and across thdip&lse water up-
take and transport into the xylem would not be possible (Myr2000; Pritchard
et al. 2000). A careful inspection of the Figures publishgdPbitchard et al.
(1993) demonstrates that the turgor falls along the roat axi

3.2.2 Osmotic potentiak),

The osmotic potentiad, is crucial for the water uptake of a cell and thus also
for its growth (Eq. (3.1); Pritchard et al. 2000; Boyer antk 20003). However,
absorbed water tends to increased so that cells have to regulate their osmotic
potential to counteract dilution and to maintain growth.oRcells can increase
their volume several times (from ca0 pm to more thanl00 um length within

10 h; Beemster and Baskin 1998). Without regulationwould soon reach-Y,

i.,e. p — Y, and growth would cease. For example, the simulation pteden
in Chapter 2 showed that a cell with loose wall and no osmetlation tends
rather to diminish the osmotic potential than increasiadutgor (Fig. 2.7).

The gas equation can be used to model changes of the osmt&itipb), =
RTns/V, (Landau and Lifschitz 1987; Génard et al. 2001)

dtws - (R T/VYOZ) dtns - % dt In V;)l + ws dt InT 5 (33)

whereR is the universal gas constafit,is the temperature;, is the number of
moles of solutes. Assuming that the temperature is congtentast term is zero.
Génard et al. 2001 proposes a simplified Michaelis-Mentesaon to model the
accumulation procesg;n, ~ Z X V,;, whereZ is a maximum accumulation rate
and X is the proportion of solutes that are not consumed and reswdirble. A
cell will not accumulate more solutes than needed to be seayd and to maintain
mechanical stability. We propose a simple osmotic reguiatiased on the maxi-
mum accumulation rat& = (,,q. (Vs — 15 ), Whereg,,... = const and), = const.
Therein, the osmotic potential fulfills the following oreairy differential equation

dtws = C(% - E) — REGR 1/13 ) (34)
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where( := RT X (nee andREGR = d; InV,;. EQ. (3.4) can be interpreted as a
simple linear approximation of osmoregulation, whéetermines the relaxation
time.

Water and solutes reach the root tip cells on two differerthyays: sym-
plastic and apoplastiqPritchard et al. 2000; Boyer and Silk 2003). Dilution
is intrinsic to apoplastic water uptake. However, soluteg teach the growing
cells through the symplastic pathway, i.e. supplied by thiegm, are not sub-
jected as strongly to dilution. As a consequence, only aitmaof the dilution
term in (3.4) acts on the osmotic potential. If the fractidruadiluted contri-
bution in each cell is known, the dilution term could be easibrrected. The
undiluted fraction may, however, depend on cell positioit¢Rard et al., 2000).
It becomes obvious that Eq. (3.4) is a very simplistic andyroapproximation
of osmoregulation. More complete water and solute uptakeetseexist (Murphy
2000; Murphy 2003; Boyer and Silk 2003), which would not lgrivere more in-
sight into the root growth model. We therefore restrict thedel to the simplest
possible osmoregulation (3.4).

3.2.3 Wall extensibility ¢

Until now a direct measurement ¢fin vivo has not been published. The mean
extensibility of the active zone has been reported instBaitthard et al. 1990).
The Lockhart-Equation (2.4) delivers the distributiorpfor known distributions
of Y, p and REGR. If we assume that neith&’ nor p change much along the
root, it becomes clear that the distributiongofs more or less proportional to the
REGR profile (Fig. 3.1).

In the last decade new insight into wall extensibility hasweed (see e.g.
Pritchard 1994; Cosgrove 2000). Several affecting fadtaere been found, e.g.
the wall proteinsexpansinsbut the complete mechanism and controls of wall
extension are still unknown. We propose an empirical apgrdeased on an hy-
pothetical enzyme deposited on the cell wall. The conceatraf the enzyme,
influences essentially the wall extensibility

Ce

—_— 3.5
Koot o’ (3.5)

¢ = ¢max
whereg,,,, is a maximal extensibility and’,, . is a constant. As already men-
tioned, ¢ is determined by several factors, and will only be propoido c, for
small concentrations. For highs the enzyme is not restricting and other fac-
tors have a central role. The simplest model describingltéigvior is the basic

SApoplast are the rooms in cells and tissues that are outbigl@lasmalemma, while the
symplast define the inside of the plasmalemma.
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Figure 3.3: Schematic representation of the auxin and cytokinin trarisp
equations. Auxin is transported polarly from the shoot talsahe root
apical cell, while cytokinin is solely transported by dgfon. The plant
shoot is represented here by suitable boundary conditRott. hormones
are subjected to enzymatic degradation and growth dilution

Michealis-Menterkinetics used in (3.5).

We assume that the enzyme concentratioon the wall satisfies

dice = Kppoq — (Kgey + REGR) c, (3.6)

wherex;,,; andxg,, are production and degradation rates. Dilution of the erezym
due to cell wall expansion, is described by the term comgih £ G R.°

3.2.4 Phytohormone transport

Reaction-diffusion equations are a suitable instrumenntalel biological de-
velopment (Turing 1952; Prusinkiewicz and Rolland-Lag@9& and citations
therein), including signal diffusion and positioning maailsms. Two different
approaches to model signal diffusion have been proposadtioa-diffusion mod-
els and cell-to-cell transport models (Roussel and Roud3@4). These differ
essentially in the discretization involved in the resgtiequations and are for

5Root cells grow almost unidirectional;! > d;l,,, d;l;,. The dilution of the enzyme occurs
on the expanding cell walls of area [, so that the dilution rate id;In(a1!) = d;InV,; =
REGR.
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small cell sizes equivalent (Hammer 1998; Roussel and Rb2894). While
reaction-diffusion models are continuous and have to beretized for numer-
ical calculation, the cell-to-cell transport approachnsinsically discrete. The
conditions needed for an equivalence of both approachesarsatisfied in the
model presented here, because cell size is not small cothparie distance
scale over which concentration changes significantly. Tagsll-to-cell transport
mechanism is used to model the positions of the differenwtiraones (division,
elongation-only, saturation, and maturity).

The change in concentration of a phytohormone inside a egllbe repre-
sented by a sum of the following contributions

dec = (96€) gip + (96C) trans + (96€) gy + () 500 + (OsC) (3.7)

which are given by:diff usion, trangort, dilution, production anddegadation.
Expressions for each of these contributions and suitahladary conditions will
be treated in the following. A schematic representatiomefttansport equations,
and each of the contributions, are shown in Fig. 3.3.

deg

Diffusion

Assuming that the cell wall membrane complex of widthas a diffusion coeffi-
cientD,, for the hormoney, the amount exchanged by means of diffusion between
cellsk andk + 1is

ao DIPP NI e

whereq is the base area of the cuboid approximating the ¢&#? = D, [, /h is

an apparent diffusion coefficient a@i o := 4(opy; — o)/l is the forward or
backward difference operator. Diffusion also occurs betweellsk andk — 1, so
that the net rate of change in amoupy, in cell & is

(OrSak)gir = a0 D (V" can — Vi Cak) = aoly, D Do

where Ayjo == V" Vo = (o441 — 2 o}, +05_1) /17 is the discrete Laplace
operator. The concentration and the amount of a solute ameected through
¢ = s/V,, which implies

(Orca)gipp = Do’ Aac (3.8)
whereV,, ,, = aq [, was used and assumed to be constant in the differentiagon, a

dilution is accounted by the ter(w;c) ;.

As expected, the diffusion contribution has the form of acidiized diffu-
sion term. However, two different discretization could lsed. We used here the
cell lengthi, as a discretization width, although we could have equitblersed
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the thickness of the cell wall. Both result in the same formal expression (3.8),
but with different apparent diffusion coefficient€2?”? contains the relation of
cell length to membrane thickness and depends hence ondhdircate, indepen-
dently of the discretization used.

Transport

Auxinis produced in the plant shoot and has to be transpadeekly into the root
tip, in particular due to the continuous increase in distdmetween the tip and the
shoot. This hormone is special in the sense that it undetggspetal polar trans-
port in the shoot and acropetal polar transport in the roaiz(&nd Zeiger 1991;
Muday 2001). Active transport can, in contrast to diffusiead to accumulation
in the root cap (Muday 2001; Perbal and Driss-Ecole 2003¢. gdiarity of auxin
transport makes it a very good candidate for positioningmaeisms (Blilou et al.
2005; Teale et al. 2005). It has been demonstrated to beteed through influx
and efflux facilitator proteins (AUX and PifN\Muday and DelLong 2001; Parry
et al. 2001; Friml and Palme 2002). Further, its transpiomatelocity,4 mm h~*
to 10 mm h~!, is several times higher than that of diffusion (Sitte et H98).
The transport of auxin in the root tip is complex, as it is nolycapical around
the central cylinder, but also radial in the quiescent aesutel basipetal towards
the elongation zone in the cortex cells (Fig. 5.1; Evans.et@86; Muday 2001;
Perbal and Driss-Ecole 2003; Teale et al. 2005). Howeveryikan transport
direction is apical towards the quiescent center.

The function of membrane transport systems is still not wetlerstood. Elu-
cidation of the function is hampered by the different trasproteins in mem-
branes (Luttge and Kluge 2002). However, a transport systambe approxi-
mated using th#lichaelis-Menterfiormalism (Taiz and Zeiger 1991; Nobel 1999).
Let the active transport system be acropetal, so that thelanod auxin,a = 2,
being transported from cell + 1 into cell & is

C2 k+1

ap jmaa:
Ko + co 541 ’

wherej,,.., iS @a maximal transport rate constant dkigj - is the Michaelis-Menten
constant of the system. Célltransports, however, auxin into céll- 1

Cok

—Qg jma:v .
Kyro + cog

AUX and PIN proteins are located on the plasma membrane @@ma)facilitate the cellular
influx and efflux of auxin, respectively. Their location oretpm is not fixed. For example,
PIN proteins cycle continuously between the pm and endosoamapartments through vesicle
trafficking (constitutive cycling; Royle and Murrell-Lagdo 2003; Swarup et al. 2005), and their
distribution on the pm can react dynamic to upon applicatibohemicals (PIN1 and PIN2) or
upon gravitropic stimulation of the organ (PIN3).
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The net rate of change in concentration is then given by

8 - ‘max ;" & ' >
( tCz,k:)tmns J Vi (KMQ"‘CM 9

The transport direction is chosen by the discrete gradigetador. Here we chose
V," reflecting an acropetal transport directionMf~ is used, the transport direc-
tion is basipetal. We should mention here that in a homog#ioiz of (3.9), due

to the continuity of the homogenized concentration, thetapproximates a term

with the logarithmic gradienf,.. V" (ﬁ) = Jmaz - VIn(Kpr2 + cog)

for [, — 0. The transport direction in the homogenized version israken
through the vectoj,,.. into account.

The transport term (3.9) represents the combination of»etihd influx fa-
cilitators. The nature of auxin transport is complicateddhds been shown that
influx facilitators (AUX/LAX proteins) are as important iteumulation as efflux
facilitator (PIN proteins; Kramer 2004; Swarup et al. 200%)xin seems also to
promote its own transport out of cells (Paciorek et al. 20@&)lch complicates
the modeling of the membrane transport system severelyl néwt no quantita-
tive mathematical model of this behavior is known to the agthlthough some
similar approaches have been used in the modeling of sheetatement (com-
pare Prusinkiewicz and Rolland-Lagan 2006).

We assume that cytokinin is not actively transported atial, its transport
is completely diffusive. This may be an erroneous assump@s cytokinin is
known to be transported by xylem and phloem. However, trasrmagtion keeps
the model as simple as possible and avoids excessivelyraonsg the mecha-
nism’s possibilities.

Dilution

Growth implies an uptake of water, resulting in a considieraidution of solutes.
A Zea mayqL.) root tip can locally grow with a rate of caa0 % ~h~*. Without
compensation, a compound’s concentration would fall to66e/ of its original
value within one hour. Restitution can either be achievegroguction or by ac-
tive transport. We see here that dilution cannot be negleateother authors have
(compare Prusinkiewicz and Rolland-Lagan 2006). The dmrtion of dilution
is

(atcmk)dil = —dt In V;)l,k Cak = —REGRk Cak - (310)

Production and degradation

We assume that cytokinin is produced at the root tip by theadgell £ = 1
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(0iC1,1) prog = K1 Okt (3.11)

prod

where ! is a constant andy; is the Kroneckersymbol, which is defined as:
dx; = 1for k = jandO for k& # j. Most auxin is produced in the plant shoot (Taiz
and Zeiger 1991). We do not model the whole plant. It is treeeeincluded into
the transport equations through a boundary condition, gbtltle production rate
vanishesi(0;cs ) = 0for0 < k < N. We will treat the boundary conditions

prod ~—
separately below.

The plant has to control the hormonal concentrations, fomiome regulation
to be possible. This happens through regulation of the mtimlu and through
suitable enzymatic degradation or conjugation. After artstime auxin trans-
port leads to an accumulation in the apical cell. It is knohat the root tip has
the highest concentration of auxin in the root (Swarup et2401). To avoid
accumulation of huge amounts of auxin (high transport vgtoct mm h=! to
10 mm h~'), the apical cell has to conjugate and/or degrade at a silzha
higher rate than other cells do. To take this into accoumtatiation/conjugation
of the hormones is described by

(OrCak) geg = — (Ko + K Ok1) Cark » (3.12)

wherex¢ and x¢ are constants. Conjugation is strictly not the same as degra
dation, as conjugated hormones may be de-conjugated faruae. The need

of a higher conjugation/degradation rate in the apical cely be an artifact of
the one dimensional model. Real roots seem to have an awynliregy system
(Teale et al. 2005; Swarup et al. 2005). Auxin transportedatally into the
apical meristem is redistributed radially towards the @oxtells and transported
basipetally towards the shoot. However, it seems that thgpétal transport ends
not far from the growth zone and PIN proteins may be involvetransport to-
wards the central cylinder, i.e. auxin is cycled. The cygloould be part of a
stabilization strategy.

Boundary conditions

Boundaries could be classified intnatural, given by the geometry of the root,
andartificial, created by treating only a subset of the whole system. Th& mo
eling of natural boundaries is normally more or less stithggtvard: the conser-
vation equations are integrated into a thin layer aroundthendary and letting
the layer thickness go to zero (Giovangigli 1999). In costtrartificial boundaries
are extremely challenging because the missing informéidsto be meaningfully
provided without excessively disturbing the solution. 6§iag conditions on ar-
tificial boundaries is a fundamental question, in particbkecause not always the
whole system can be modeled or simulated (see e.g. Quarétn2000 for the
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case of vascular fluid dynamics).

We introduced an artificial boundary to avoid a treatmenthef $hoot. We
therefore have to give suitable boundary conditions. We@se the following

¢ No diffusion into the surroundings of the cell string (horeagousNeu-
manncondition). Reduces to a condition fbr= 1:

<8tca’1>diff = Dgpp Vd+ Ca,l » fork=1.

e Cytokinin fulfills the do-nothingconditiorf on the artificial boundaryk( =
N):

(atCLN)diff =—-D"N e n, fork=N.

e The missing plant shoot is represented by an auxin sourdehyihoduces
an influx through the artificial boundary. The concentratigrin the source
changes with rate:

- n

in _ in  Jmax &)
dtC2 — /{2 - — K iTL 9
[ M2+ ¢

wherexi" is a constant production rate ahds a mean cell length. This
boundary condition can be identified withDarichlet condition forc,.

Transport equations

Combining all the contributions and boundary conditions oletain the following
transport equations

Cytokinin :
D?pp Vd+ C1,1 + (Féllj — K(il — Kf — REGRl) 11 k=1

dtcl,k = { —Dtllpp Vd_ C1,N — (Ii‘li + REGRN) C1,N ) k=N (313)
Dlllpp Ay Cl,k — (Iitli + REGRk) C1,k , else

8The do-nothingcondition for a partial differential equation is found thgh theweakfor-
mulation of the equations. Here, the do-nothing conditieadmes the same as a homogeneous
Neumann condition, which means that the concentrationrhes@onstant.
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Auxin :
Dthpp VdJr C21 — (Hg + HS + REGRl) 02714‘
. c
+]mazm , k=1
_Dgpp Vdi Co,N — (lig + REGRN) Co, N+
d Cr = . —+ Ca, o
tC2, +Jmaz Vj (ﬁ) , k=N 214
Dgpp Ay Cok — (Iig+REGRk)027k+ ( ’ )
+Jmaz Vd+ (KM(;zfclk) s else
Cong1 = o
3 ) .'m,a:l: CTn
dtcén = Kén - 1 KM,zercgn

Refer to Fig. 3.3 for a schematic representation of the éopmtwvith their
boundary conditions.

3.2.5 Caell division

The different phases that a cell undergoes are closelyecktatits division rate.
We will denote here the division rate I8y Beemster and Baskin (1998) analyzed
the growth and division rates @drabidopsis thaliangL.) Heynh. roots. Their
measurements show that the distribution of the divisioa imalmost constant up
to a certain distance from the quiescent center. From thtawce on, the division
rate is reduced drastically until it reaches zero. This figdieads to a step function
to model the field of division rate. The division rate of dells then

A for 0 < ap(t) < zg
Olae(t)) = { 0  elsewhere

wherex, () is the position of celk at timet, 6, is a positive constant and, de-
scribes the position where the cell stops dividing. is however not necessarily
constant in time and the same for each cell. In Section (B.2:6 will present
how z,; is determined in each cell.

, (3.15)

We assume that the division process is symmetric, i.e. thghtar cells have
half the mother’s length, while all other properties aresealswithout modifica-
tion. This implies that the concentratiof of phytohormones or the concentration
of cell wall ¢, are not affected by division. Additionally, the divisiomgoess does
not affect the overall tissue length, i.e. before and aftdivesion the tissue has
the same length.

We still have not cleared whyis so important to model th8 EG R distribu-
tion. The answer to this question is simple: cells whichaivnave to grow. This
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occurs in contrast to expansion growth (water uptake) bgptgsm production.
Even so, a cell must double roughly its volume before it digidHigh resolution
measurements of cell length suggest the existence of aatriéngth indispens-
able for division to occur (lvanov and Maximov 1999). Thissispported by
high spatial resolution growth measurements, which showimr less constant
REGR inthe meristem and a sudden transition into the elongaboe £Fig. 3.1;
van der Weele et al. 2003). The growth in the meristematiore highly cor-
related to proliferation. The average of the relative grovdte over time in the
meristem can be easily estimated. ket= 6;"' denote the cell cycle time lapse.
The cell length averaged over time at a fixed position in thestean should be
time independent, otherwise after a certain tifhe> 7, the size of meristematic
cells would approach either zero or infinity. This is parély true for the apical
cells, which stay in the meristem at all times. Conservatibaverage length is
guaranteed when cells double their size in one cell cyde(t + 7) = 21(t).
This implies that cell length in the meristenvigperiodic. The average of a peri-
odic function is given by the average over one period. Heincie meristem the
average relative growth rate over time is given by

S 1 ("1 I I
REGRyer = = / —dldt = — / diInldt = — ln@ ,
wherel, = [(0) is the minimal and(r) is the maximal cell length. Thus, the
averageRE'G R in the meristem is:
REGRer = 6In?2 , (3.16)

I.e. the average over time is essentially given by the dimisate. This is in accord
with the finding of Beemster et al. (2003) that in the apicatistem cells divide
and grow at similar rates.

An expression for the average cell length over time in theistemn is also

easily obtained. The length of meristematic cells, like B¥6G R, is a periodic
function; we obtain thus the time-averaged cell length

_ 1 T T
lMer:_/ ldt:L/ d;ldt ,
T Jo REGRer Jo

and after integration and useidf + 7) = 21(t)

Z]\/jer = lo/ In2. (317)

3.2.6 Assembling the model

Each cell in the string has its own growth rate, turgor, osepbtential, wall
extensibility, etc. These can be described by vector fonstwith an increasing
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dimenSion- We assume thﬁt pr ap, a1, &, E, Qbmam) KM,e) Pou jma:vu KJ\/[,2 and
k¢ are the same for all cells. The division process is modelateasribed above
in Section 3.2.5.

The transitions between division, elongation-only andurigt are controlled
by the ratio functionu(cy, ¢2). This function may be thought of a sensing mech-
anism inside the cell. Transition into elongation-only mioi saturation is accom-
plished whenw reaches certain critical values; or w,,;. Because the concentra-
tions of hormones depend on position and thus on cell ikdée ratio function
wr = w(cy g, cor) allows the cells to obtain information on their position. dto
dination of the growth zone becomes therefore pos$ibiée selected here the
empirical ratio functionv = ¢; /¢y, as it suffices to describe the action of auxin
(c2) on the growth distribution.

Changes in wall extensibility, reflect the transition into a new phaseg.does
not act directly on the wall extensibility, as the transiscare mediated through
the production and degradation of the cell wall enzyme. ti$ #tus on the rates
of these processes

Ko = Ky gin 0(Wer — W) + K5 o 0(wi — wer) O(wWsar — wi) (3.18)
K’(ei,k = Kz,sat e(wk’ - wsat) )
wherer; .., x5, andkg ., are constants corresponding to production and degra-

dation rates in the division, elongation and saturatiorsphA(x) is the Heaviside
function'® andw,; andw,,; are constant thresholds.

Eq. (3.18) connects the phytohormone distributions to tlesvth equation
(3.1). Through this equation the plant is able to influencat tgp growth by
increasing or decreasing the phytohormone concentrations

Ky'y Ky — Wy — Ky g, kg — Ok — REGR), .

To obtain distributions of cell properties, as turgB; GG R, etc., the cell coor-
dinates are needed. We define these to be at the cell centkatdbe velocityy,
and coordinate;;, of cell k are

T = .Tk_1+(lk+lk_1)/2 $1:l1/2,
Vp = Vp_1+ (dtlk + dtlk_l)/Z V1 = dtl1/2 .

9The model assumes that all cells in the string, which repitssihe root tip, sense their
distance to the quiescent center resulting in coordinaifdhe growth zone. However, in a real
root only selected cells may be sensing the distance anthdetethrough cell wall stiffening the
end of the growth zone (e.g. stiffening of the young vasciigaue). As long as the model is one
dimensional, these two do not differ.

1%The Heaviside function is defined @&r) = 1 for z > 0 andd(x) = 0 else, and should not be
confused with the division rate of Section 3.2.5. This dossrate can be defined &5« (¢)) :=
O(xk (t) — Tel).
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Figure 3.4: Mean velocity and? EG R distributions (averaged over=
120 h to 300 h). Transition into elongation-only occurs at cA.5 mm
from the tip, while saturation begins &tnm.

3.3 Simulation, results and discussion

In this section we would like to present simulations of a omeethsional root and
to discuss the results in the light of experimental resutisst we will show the
distributions and cell characteristics predicted by thelehoThen the behavior of
the model to an increase in auxin production is presented sirhulation is based
on Egs. (3.1), (3.4), (3.6), (3.13) and (3.14). These orgiddferential equations
are solved numerically by axplicit Euler schemen an equally discretized time
mesh of widthL0~? min. At each time stepy, ¢, andxj, were determined for
all cells using the distributions of phytohormones togethi¢gh the ratio function
w and Egs. (3.5) and (3.18).

Simulation starts with two initial cells. These have thdialiproperties found
in Table 3.1, where also the simulation parameters can balfolihe parameters
were chosen so that a typicata maygL.) root is resembled. The cell width and
height were chosen ag;, = 10 um andl, = 10 um.

3.3.1 Growth distribution and cell properties

The predicted distributions of velocity am@lEG R along the root are shown in
Fig. 3.4. These were averaged ovet 120 h to 300 h, because of oscillations in
the distributions (compare Fig. 3.8). In contrast to theenadcepted notion of a
gradual increase dR EG'R in the meristematic region (Erickson and Sax 1956),
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Table 3.1: Parameters chosen to resemble a typid mayqL.) root. 1) Ini-
tial conditions. 1) Cellular parameters: division ratg (h~1), yield threshold
Y (M Pa), water conductivityL,, (ummin~' M Pa~'), osmoregulation rate co-
efficient ¢ (min—") and set-point osmotic potential, (M Pa), elongation and
saturation thresholds of auxin/cytokinin ratie.{ and w,.). 1ll) Parameters
used in phytohormone production, artificial boundary ctadiand wall en-
zyme production. Units:[l] = pm, [t = MPa and|[c], [c1], [ca], [¢5'] =

mmolm=3min~', [P,] = pmmin=', [*] = mmolm=3min~", [[| = min~!,
maz] = mmolm™2min™t, [{] = mmolm™3, [I] = pm and [¢pe.] =
min~! MPa~!.
I Initial conditions
l R Ce ¢ o o
10 —0.5 0.0408 0.1 0 104
[l Cellular parameters
) Y L, ¢ s Wel Wsat
1/12 0.2 60 —0.1 —0.5 0.2 6
[l Hormonal parameters
Hormone P, KP* KT KET mar Kot
Cytokinin,a =1 20 0.2 45x107* — — —
Auxin, o = 2 20 — 10~ 4 100 2 x 1072
Boundary Ky I

1072 100
Wall enzyme Kegin ™ Foa™ Kot Omae Kuret
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the model shows an abrupt transition between the divisiahtha elongation-
only zones (Fig. 3.4). Recent measurements of van der Weale 2003 and
Ivanov and Maximov 1999 confirm for several species a moreess tonstant
REGR in the meristem and an abrupt acceleration in the elongaboe (Fig.
3.1). The sharp increase in growth indicates a change in gehamism of cell
expansion (lvanov and Maximov 1999). The differences betwthese notions
of meristematic growth can be explained by the smoothinggaares needed in
the determination of th& EG R profiles. Sigmoidal fits of the velocity profiles
have been used traditionally for the determination of 8GR distribution
(Morris and Silk 1992). A gradual growth increase is intiin® a sigmoidal
velocity profile, so that it is does not surprise that the fitdges the sudden
change inREGR. Modern methods allow the determination®fG R profiles
more accurately (Walter et al. 2002; van der Weele et al. 2808 confirm this
behavior.

Cytokinin, produced in the apical cell, falls quickly alotige root axis, while
auxin accumulates in the apical cell and is almost constaatwere (Fig. 3.5).
The different degradation rates allow a monotonic raticcfiom w and thus an
adequate positioning mechanism (Fig. 3.5). Auxin accutiarieoccurs due to
the polar transport, and measurements of tAdoncentration along root apices
of A. thalianaconfirm its existence (Swarup et al. 2001). Accumulationhi@ t
columella is the basis of theuntain modebf auxin transport and consequently
of gravitropismmodels (see e.g. Chen et al. 1999; Blancaflor and Masson 2003;
Perbal and Driss-Ecole 2003). Auxin gradients, produceainterplay between
polar transport and diffusion, are good candidates fortmesng mechanisms
(Blilou et al. 2005; Teale et al. 2005).

The model does not take the sub-cellular distribution ofimuinxto account,
although the cell can be treated as being composed of thjaeesd compart-
ments: cell wall, cytoplasm and vacuole (Kramer 2004). fingathe cell as an
homogeneous entity has mainly an effect on the calculafitimeoactive hormone
concentrations, as the amount of active hormone is notilaliséd in the whole
cell volume. However, although the physiological effedtgoxin are well doc-
umented (Taiz and Zeiger 1991), the complete mechanisnmtyehixin sensing
is still unclear. It does not make much sense to take a subkaedistribution
into account, while the relevant compartment is still unkno Nonetheless, the
simplified model is enough to describe the concentratiodigras qualitatively
(Swarup et al. 2001). A more extensive approximation olutatland sub-cellular
auxin transport can be found in Kramer 2004.

Cell length along the root axis is subjected to strong vimast A snapshot
att = 270 h and the averaged distribution (from= 120 A to 300 h) are shown

11AA: Indole-3-acetic-acid, the most relevant auxin.
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Figure 3.5: Distribution of auxin, cytokinin and their ratio functian(t = 270 h).
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270 h). The mean cell length distribution is also shown (averagextt = 120 h
t0 300 h).
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Figure 3.7: Positions of transition into elongation-only and satunatphases.

Transition into saturation shows strong oscillations waitheriod of one cell cycle
(12 ), and additionally superimposed quantization effects.
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Figure 3.8: Velocity of root tip against time since “germination”. Olkafion of
the saturation position produces a strong variation iniffgevelocity.
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in Fig. 3.6. Cell division is responsible for the oscillation cell length distri-
bution. The transition into elongation only and into satioradepend only o,
and hence only on the phytohormone concentrations. Thussja@h and transi-
tion into elongation-only are not coordinated, resultingvarying terminal cell
lengths. Because cell division is perfectly synchronizethie model, the varia-
tions in cell length distribution are regular. However, alreot does not have
such a complete synchronization, explaining why irregstaong variations of
cell length have been reported (see Fig. 8 in Pritchard é19810).

The turgory, distribution is almost constant along the root (Fig. 3.6ithw
a slight deviation in the elongation-only zone due to thénbigwvall extensibility
[Eq. (3.2)]. Pritchard et al. (1993) found the turgor to bastant, but a careful
inspection of their Figures shows that the turgor fallstglig The cause of this
is not certain. Either the osmoregulation is not fast endogiounteract dilution,
or the increasing wall extensibility causes the turgor to[G@mpare Eq. (3.2)].
Water and solute supply is chimeric in the root tip: symptaahd apoplastic
(Pritchard et al. 2000; Boyer and Silk 2003). A substantiabeant of the solutes
are not subjected to dilution, as they are supplied sympédit (phloem). A slow
osmoregulation is thus improbable. The model shows thatalttee higher wall
extensibility in the elongation-only zone, the turgordaibt more than.05 M Pa
(Fig. 3.6). Pritchard et al. (1993) showed, however, thattthigor falls continu-
ously at the basal end of the elongation-only zone for masa ¢hl M Pa. The
cell extensibility can thus not be the cause. A heterogemeeposition rate of
osmotically active compounds (Walter et al. 2003) may bpaoasible for an in-
creasing osmotic potential and consequently for a decrgdargor. It becomes
clear that modeling the distribution of osmotically acts@mpounds is essential
for the description of the turgor distribution.

The elongation-only zone and consequently the growth ofathele root is
characterized by the position of the transition into eldimyaonly and saturation
(Fig. 3.7). Transition into elongation-only occurs aftestenrt stabilization phase
at an almost constant position. Because no basal meristeradsled, this posi-
tion equals the meristem size. The transition into satomat superimposed by
an oscillation with a period of the cell division timéX h). Quantization effects
overlay the oscillation making the transition positionZyz

The dimension of the elongation-only zone determines theritg of the root
tip (Fig. 3.8). The oscillation found in the saturation pimsi is therefore trans-
ferred into the tip’s velocity. Slight quantization effecire visible in the magni-
fied section. Oscillations of the root tip are well documeraed have been shown
to depend on several environmental factors as nutrientadoiiaty (Walter et al.
2003; Walter and Schurr 2005). It is however still unknowmvhbey occur, al-
though a model based on two circular growth waves linkedneflioxes has been
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proposed (Shabala and Newman 1997).

Figs. 3.9 and 3.10 show the time evolution of the wall exteiligi, velocity,
osmotic potential and cell length of a chosen cell. A cellig h inthe elongation-
only zone, which is considerable less than the cell cycle {ii2 ), as becomes
clear from the evolution of wall extensibility. The time éwton of the cell’s ve-
locity shows that the cell accelerates exponentially umtihaximum velocity is
reached (same as the root tip velocity). The proposed ogulat&gon maintains
the osmotic potential as near as possible to the set-pdimvg = —0.5 M Pa.
Even so, dilution can be clearly seen. As with the veloclig, ¢ell length grows
exponentially until the mature cell size is reached.

3.3.2 Auxin change

We examine in this Section the behavior of the model to chamgauxin pro-
duction rate. Such auxin concentration changes corresgotige shoot sending
information to the root to control/influence growth. Twousition are examined.
First, a sudden increase in auxin production is simulatetthe reaction of the
root tip’s velocity is determined (Fig. 3.11). Second, talerstand the effects on
the velocity, the dependence of the meristem and elongatbnzone dimension
on the production rate was determined (Fig. 3.12).

Growth, in particular the size of the meristem and elongataly zone, de-
pends on the auxin production rate. This was simulated byddesuchange in
auxin production rate* after the root stabilized from the germination process.
Fig. 3.11 shows the root tip velocity versus time. At 150 h the production
rate xi" was increased tenfold from)=2 to 10~ mmol m™min~'. After the
change, the tip slows abruptly downd® mm h~! for one hour, and rises then to
oscillate around.4 mm h~!, which is considerably lower than before the change
(1.8 mm h~'). Beemster and Baskin (2000) found that a synthetic aux (2
dichlorophenoxyacetic acid) applied exogenouslyArabidopsis thalianall.)
Heynh. roots reduced the tip velocity substantially. Tki€onsistent with our
model results. It is noteworthy that not only the mean véjochanged, but also
the amplitude of the oscillation increased by a factot.6f

The size of the division zone (meristem) and elongatiory-@aohe were de-
termined for a variable production ratg" (Fig. 3.12). This was achieved by
changingxi" suddenly at = 150 A from 10~2 mmol m=3 min~! to a new value
between2 x 10~° and2 x 10~ mmol m~2 min~'. For each new value a new
simulation was started. Meristem and elongation-zone filtewith increas-
ing auxin production (Fig. 3.12). Beemster and Baskin (2aftermined the
REGR distribution after application of auxin and found that thengation-only
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Figure 3.9: Evolution of wall extensibility and velocity of a chosen Icelime

axis chosen so that transition into elongation occurs at 0 h. Cell velocity
increases exponentially until it reaches after Ta: the velocity of the root tip,
which oscillates (compare Fig. 3.8).
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Figure 3.10: Evolution of cell length and osmotic potential of a choselh ¢zell
length increases exponentially until saturation. Dilateffects are clear in the
evolution of osmotic potential. Time axis chosen as in Fi§. 3
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Figure 3.11: Reaction of the root tip to a tenfold increase of auxin praidunc
(i.e. k5 : 1072 — 10~ mmol m=3 min™1).
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zone narrows and shifts towards the quiescent center withathange in maxi-
mal REGR. Hence, auxin affects the distribution of wall extenstjitather than

the wall extensibility itself. The model presented heredwels similarly. On in-

creasing auxin production the meristem size, which comedp to the transition
position into elongation-only, shifts towards the apicall @and the elongation-
only zone shrinks. Beemster and Baskin (2000) found in esttio the models
prediction the meristem, defined as the division active zama independent of
elongation, to shift basally on application of auxin. Thisalepancy between
measurements and model can be explained either by the reesstr method
used (Beemster and Baskin 2000), or by the strict separagétween elongation
and division assumed in this model (Section 3.2.5). On tleel@amnd, the method
used by Beemster and Baskin 2000 to measuréthié R distributions relies on
a small number of markers and has thus no high spatial réeseludn the other

hand, a strict separation between cell division and eloogad improbable.

3.3.3 Conclusion

The auxin- and cytokinin-like properties given to the twaopbthetical phyto-

hormones are essential to the control of the model’s rootgslbon zone. The
cytokinin-like hormone produces mainly a gradient, whishmiodulated by the
concentration of the auxin-like hormone. A similar strategay be used in real
primary roots to control the root elongation zone. These ltomones may be
part of a positional system, which allows the root cells ttagbinformation on

their position along the root axis. The effects of auxin oe &hongation zone
(Beemster and Baskin 2000) and the sudden change betweéstematic and

elongative growth support this view (lvanov and Maximov 299an der Weele
et al. 2003). Plants may influence this positional systemhgnging the pro-

duction and/or distribution of auxin and cytokinin. Thiseses to be the main
strategy involved in the gravitropic reaction, where the@bauxin redistribution

is shifted towards one side to produce curvature. The mduei/s that a plant
shoot is able to influence root growth by changing the pradoatf auxin, and

provides a sound basis for extension into gravitropism nsodéhe refinement
of the growth equation allows a connection to models of bicmaaics and water
uptake, so that the influences of soil properties on root tiramay be modeled.
Solute uptake, transport and deposition is essential fatrgmwth. The model is
too simplistic in this point and should be extended to ineltlte transport and de-
position of solutes, in particular because of the importasfccarbohydrates in the
growth process and osmotic active solutes in water uptakeedame also clear
that a strict separation between division and elongatistriots the model too
much. However, allowing both to overlay complicates the atioal treatment of

the problem substantially (particularly in multidimensa models). The mecha-
nism involved in auxin signaling and action are still too nokwn and oblige the
use of an empirical ratio function.
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Curvature Phenomena

4.1 Introduction

Differential growth in cylindrical organs, ——====s: 51~ Iy B
AN ‘\‘ Tip

cess that involves changes in transcription and
dynamic alteration of protein expression pat-
terns (Muday 2001; Friml and Palme 2002; p
Friml et al. 2002; Blilou et al. 2005; Teale PN
et al. 2005). Quantitative analysis of growth sz/—l }ﬁﬁ
and differential growth is a prerequisite to un- S :
derstand the molecular organization of this ‘
process. e

Several concepts have been used to char-
acterize curvature of cylindrical organs. The_ o
three most noticeable being probably: diffel-'9ure 4.1:  Cylindrical organ
ential relative elemental growth rat@ GG r) WNich grows and curvesy and
distributions (Silk and Erickson 1978; Silkienote the curvature radius and cur-

. . vature at distances from the or-

1989; Ishikawa and Evans 1993; Ziescha n apex, respectivelya(s) is the
et al. 1997; Mqllen et aI.. 1998a), the CUZrvature angle at positios while
vaturex (€.g. Silk and Erickson 1978; Silk,,.. denotes the tip's curvature an-
1989; Selker and Sievers 1987; Zieschang ag@. The tangent and normaln
Sievers 1991) and distributions of curvaturgre shown. The dashed circle seg-
angle (Mullen et al. 1998b; Mullen et al.ments on the upper and lower sides
2000; Wolverton et al. 2002a; Wolverton et alhave the same arc length, and the
2002hb). hatched area depicts the gradient in

Differential REGR distributions and the volume increase produced by differ-
rate of change of curvaturel) have been €ntial growth.
shown to be equivalent (Silk and Erickson
1978; Silk 1989; Zieschang et al. 1997). However, diffesdn® £G R profiles
are prone to errors, because the traditional method to measuG R distribu-

49
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tions relies on a relatively small amount of markers andrpudkation schemes
need to be applied (Peters and Bernstein, 1997). Moredwverdétermination
of curvature production through differenti®EG R profiles is critical, because
the coordinates of the profiles have to be matched correaty-rivial for e.g.
curved root geometry and easily resulting in artifacts).

As will be shown belowx andd;x are not suited to describe the change of
orientation of an organ and do not quantify sufficiently tmeduction of curva-
ture. This becomes clear in Fig. 4.1, wheris constant and, is zero, although
the orientation of the organ changes. Quantitative relatimf curvature produc-
tion at specific regions need to be established to elucidfgsahtial growth and
organ curvature in gravitropism, phototropism and hydnism (see e.g. Blan-
caflor and Masson 2003; Eapen et al. 2005; Esmon et al. 200&xefore, the
concept of the curvature angle distribution (Mullen et a@98b; Mullen et al.
2000; Wolverton et al. 2002a; Wolverton et al. 2002b) wasedéd here, to find
a suitable measure of curvature productidifférential growth curvature rate
DGCR).

Theoretical calculations presented below, show for cureabccurring in a
plane the relation of th&®GC'R to d;« and to differentialR EG R profiles. More-
over, this concept is extended to describe curvature asttoprocesses in three
dimensions. In addition to this, theGCR is applied in a simple model of root
gravitropism, and used to simulate two different cases o¥ature production
in root gravitropism (one and two sites of production). Theent proposal of
the existence of two motors in root gravitropism is testestetvidth (compare
Wolverton et al. 2002a). The simulations presented hergvghat a suitable
measure of curvature production is essential to be ableptarate two motors that
are located so closely as proposed (in the distal elongatior, DEZ, and in the
central elongation zone, CEZ; Ishikawa and Evans 1993; &vin et al. 2002a),
and confirm the need of a suitable measure of curvature ptiodu®GC R).

4.2 Curvature production in R?

In some situations, the center curve of curving organs caappeoximated by a
plane curvey — R? (compare for example roots during the gravitropic reagtion
In this section we assume curvature in a plane, while in theviing section the
case inR? will be treated. The natural coordinate system of a cyrye(t),t) €
C*(R x R,R?) either inR? or R3, wheres is the arc length, is given by (e.g.
Smirnow 1990)

t = 0O
2
n — ast asssp
K K
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wheret is the tangeri n is the normal and is the binormal ofp, andx = ||,t|
Is the curvature anck denotes the vector product. Compare also Fig. 4.1. The
curvature vectoN is defined as

N=0,t=kn,

and gives a measure of the intensity and direction of curgatdere, the midline
 of the organ depends on timéecause it deforms due to the curvature process
as a consequence of asymmetrical growth. The rate of chanipe curvature
vector can be used to determine the rate of change @dhe rate of change aX

is given by

d;N = d;0,t = 0,0, + 9%t dys = O, (Ot + Ot v) — Ot REGR

where velocitypy = d;s, and relative elemental growth rale’GR = 0,v, and
the chain-law of differentiation were used. However, besedu= t (s(t), t)

dtt = @t -+ 851:1) 5
so that
dtN = 85dtt - 081: REGR .

Now taking into account that the tangential and normal uscaoe rotated by an
angular velocity2 = w b, we find

it = QAxt=wbxt=wn,

dn = Qxn=wbxn=-wt (4.1)

and

d4dN = d,(wn)— &t REGR
(Osw)n +wosn — k REGRn
(DGCR — k REGR)n — kwt ,

were DGCR = 0J,w is denoteddifferential growth curvature rated,t = kn,
osn = —rkt (Smirnow, 1990) and the chain-law of differentiation wesed.
Now usingd; N = d;x n +  d;n we finally obtain

d;x = DGCR — k REGR . (4.2)

This shows that the rate of change of curvatijreis composed of a “production”
term DGC R and the term-x REGR. The latter can be denoted as dilution term,

INo confusion should arise between the tangeatd timet, as one is boldface and the other
italic.
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because it is negative for growing organsas 0 and REGR > 0).

The meaning of thé)GC R becomes clear through a curvature conservation
equation, which is obtained using

dik = Ok + Oskv = Oyk + Os(kv) — Kk REGR

so that comparison delivers

Ok + 0s(kv) = DGCR.. (4.3)

Coupling this equation to a conservation equation (compage the mass con-
servation equation;p + div (pv) = 0) shows that in the context of a curvature
conservation equatioPGC' R is thesource of curvatureThis shows thaDGC R

is exactly the concept sought for to characterize prodoafocurvature. More-
over its calculation is simple through the angular velocitftropic speed)

DGCR = 04w . (4.4)

It is defined according to thE EG R, as a divergence of a “velocity”. However,
instead of representing the relative increase in lengtiescribes the amount of
curvature angle produced per unit time and unit length. dfoee, the curvature
angle can be obtained by an integration

T rs(t)

als(t), £) = / DGCR ds(t) dt . (4.5)
0J0

Note that because the arc lengfl) changes in time, the integration over distance

and over time do not commute.

4.3 Differential growth in R?

The term differential growth has to be defined carefully, suse it can be
interpreted widely and lead to missunderstandings. A nreasugrowth could
be the rate of change of length, of area or of volume or theivelgrowth rate
(REGR, RGR). REGR gradients may be interpreted as differential growth (Zi-
eschang et al. 1997; Mullen et al. 1998a). However, alth@uBi'G R gradient
may not exist, the organ can be changing its orientationaaegtadient in rate of
change of length? This makes clear, that orientation is determined by graslien

2REGR measures the relative increase in length. For s®&B& R, a long length element
increases absolutely more than a short element, leadingtiarege of orientation.
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in rate of change of length and not by gradientdiAGR. Differential growth
will thus be defined here, in the context of tropisms, as thegss behind changes
in orientation.

The connection of thé&)GCR to REGR
gradients is found by assumption of a cylin-
drical organ of radius (Fig. 4.2; compare
Silk and Erickson 1978; Silk 1989; Zieschang
et al. 1997). At a certain arc length, the mid-
line and the upper and lower sides can be ap-
proximated by segments of a circle. The cur-
vature radiug of the midline curve can be de-
termined through

s=pp = p=20ss,

wheres is the arc length angd is the opening
angle of the segment. The difference in curva-

Figure 4.2: Simplified geome- e radius between the upper and lower sides
try of a curved cylindrical organ. ;¢

p is the curvature radius of the

midline, while p, and p, are the

curvature radius’ of the upper Pu— p1 = O350 — Dgs1 = 27 . (4.6)
and lower sides is the opening

angle of the arc segments s, h ) dtoh
ands, (midline, upper and lower e organ is assume .to have a constant
radiusr, so that the time derivative of Eq. (4.6)

side respectively), and is the

radius of the organ. IS
dt(agsu — 8581) =0.

The partial derivativé); and total derivativel; do not commute becauge= (3(t),

so that using the chain-law of differentiation ang, = s, (5(t),t) the above
Equation is transformed into

8@ (@Su + 8@Su dtﬁ — 81381 — 8@Sl dtﬁ) — (agsu — agsl) agdtﬁ =0.
However,d;3 = w is the angular velocity by which the tangenis rotated, so
that

0pds 3 = 05di 3 035 = pOsw = pDGCR

whereDGCR = J,w andp = dzs were used. Taking now into account Eq. (4.6)
and thatd; s, ; = 0,5, + 03s.,d:5 we find
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Os(vy, — vy)

DGCR = = , 4.7)
2r

wherev, = d;s, andv;, = d;s; are the rate of change of arc length of the upper
and lower sides, respectively. Eq. (4.7) can be transfolimtedan expression of
a REGR gradient

REGR, — REGR, e REGR, + REGR,
2r 2 ’
whereREGR, = 0,,v, and REGR;, = 0,,v, are theREGR of the upper and

lower sides respectively. The second term on the right of E®) arises from the
change of variables — s, ;. Note that in general

DGCR =

(4.8)

REGR # (REGR, + REGR))/2 .

Silk and Erickson 1978 derived a similar expression to E@)(4

d;In(1+2rx") = REGR, — REGR; , (4.9

wherer’ is the curvature of the lower side. A simple but somewhat censdime
calculation shows that Eq. (4.9) is consistent to Eqs. @na)(4.8) up to second
order terms ofcr. 2

The determination of curvature productian"GC R through (4.4) is superior
to using (4.8), as it uses the midline of the organ and is diqdar advantage in
root tips, where cell lineages have a complicated geomeiay the quiescent cen-
ter and organ radiuscannot be assumed to be uniform along the axis (Hejnowicz
and Hejnowicz, 1991).

4.4 Curvature in R3

In the past sections we treated curvature production ofwrgea plane. Nonethe-
less, curvature processes occur in the three dimensioaaésprhis opens new
motion possibilities, in particulaorsion of the organ. Circumnutations of roots
and hypocotyls is known to include torsion of the organ (&idk 1989; Barlow
1992). A description in plane is thus only a rough approxioratHowever, the

3Silk and Erickson 1978 used another nomenclatin) = REGR,,, M (i) = REGR,
and in particularR = p — r. This results in a slightly different curvature than thedibere:
K =R '#£p 1=k
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plane case can be subsequently extended to describe aeriraits.

The calculations presented in Section 4.2 are based on Eb). (4 R? the
rotation axis oft andn is not anymoreb. Instead the angular veloci§ is a
linear combination of the three vectors

Q=wt+w,n+w,b, (4.10)

wherew; = Q-t,w, = Q-nandw, = 2-b. Eqg. (4.10) shows th&t acts also on
the binormalb (torsion). The time dependence of the natural coordinatteay
is determined by the ODE

dt = Axt = wyn—w,b
dtn = Oxn = Cdtb—Wbt for 0<t
db = Qxb = w,t—wn (4.11)

t(O) =tg, n(O) =1y, b(O) = by for t=0

Through a calculation analogous to Section 4.2, but takigg &.11) and
osn = —kt — 7 b (Smirnow 1990) into account, we find

dik = —w, 7+ 0wy, — Kk REGR,

A7 = w,r—Ow —7REGR., (4.12)

wherew, = wa, andw; = wa;. EQ. (4.12) is a coupled ODE system, which
solution gives: andr at any time. Eg. (4.12) can be transformed into conservative
form, yielding

Ok + 0s(kv) = —w, T+ Oswy ,
T+ 0s(Tv) = wyk — Oswy . (4.13)
This shows that the sources of curvature and torsion are fpye
DGCR = —WnT + as(")b )
(4.14)

DGTR = w,k— Osw; ,

where DGT R is thedifferential growth torsion rateNote that theDGCR in Eq.
(4.14) is consistent with Eq. (4.4), because 0 for organs that curve in a plane.
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Figure 4.3: Root growth and model of gravitropism motors. Solid line de-
notes aneasuredelative elemental growth rat&E G R) distribution of
anA. thalianaroot (average over first i of gravitropic reaction; provided
by K. A. Nagel, Forschungszentrum Julich). Dashed and dhdb#&ed
lines denote the differential growth curvature rat&{C' R) assumedor
two and one gravitropism motor(s), respectively.

Root gravitropism model

The proposed measuieGCR is applied here in a simple model of the gravit-
ropic reaction of roots. Eq. (4.3) can be used to simulatedases of curvature
production: one and two sites of production. These casesomreeivable in root
gravitropism, as the existence of two motors have been gexpecently (Wolver-
ton et al. 2002a). These motors have been assumed to bed@atabe distal and
central elongation zones (DEZ and CEZ; Ishikawa and Evaf8)1vhich are
centered around the elongation maximum (CEZ) and apicélthe elongation
maximum where growth attairs®% of the maximalREG R (DEZ; compare Fig.
4.3).

Let a gravitropism motor be given by a bell-shaped curve

o2

M(s,3) = A sin(B) exp (—S — SO) , (4.15)

wheres is the arc-lengthj is the stimulation angled is an amplitudes, is the
center position of the motor and describes the extension of the motor. The fac-
tor sin(3) models the dependence on the stimulation apgénd was chosen in
terms of the Sine-Law (Sachs 1882).
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Table 4.1: Simulation parameters of root grav-
itropism model.

Motor A (mm~'h™') so (mm) o? (mm?)

One motor
One 2.1 0.19 2 x 1073
Two motors
One 1.05 0.19 2x 1073
Two 1.05 0.3 5x 1073

Because theDGCR is the source of curvature [compare Eq. (4.3)], and
sources are additive, it can be described as a sum over tlegnot

N N
DGCR(s,8) =3 My(s,8) = > A, sin(5) exp <—3 _Uj°> . (4.16)
i=0 i=0 @

where N is the number of motors present. An extension of this exprY®
describe more than one sensor, i.e. more than one stimuktigles, should be
straightforward. When the root is initially stimulated &7, the stimulation angle
and curvature angle of the whole organ are related by90° — ay,.

Note that the model of the dependence of the motors on theilstiion angle
is very simplistic. Signal transduction is not instantameo organs, so that in-
formation on the stimulation angle needs time to reach theitee tissue (refer
to Swarup et al. 2005 for the case of auxin). Moreover, itils wclear if the
Sine-Law is correct (e.g. Audus 1964; Barlow et al. 1993; IBtuket al. 2000).
However, as will become clear below, the fact that the readtfiecreases in time
is here more important than the actual law behind it.

Using Egs. (4.3) and (4.16) two root gravitropism cases \sameilated. The
first assumes that one motor is responsible for curvaturéyetmn, the second
case assumes two spatially separated motors (Wolvertdn 2082a). The pa-
rameters used in the simulation are presented in Table #dselwere chosen to
resemble arabidopsis thaliangL.) Heynh. root, and were based on the defini-
tion of the DEZ and CEZ and on unpublished measurements ajrthatropism
kinetics ofA. thalianaroots (measurements conducted in the author’s lab). The
velocity distributionv was obtained by integration of a measue8G R distri-
bution (average over firsth of gravitropic reaction of aA. thalianaroot; dataset
provided by K. A. Nagel, Forschungszentrum Jilich). TheGR distribution
and the gravitropism motors are shown in Fig. 4.3. As EqQ.)(4.2 conserva-
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tion equation, it was solved using t@®nservative Lax Methgavhich has been
shown to be stable for suitable discretization widths (d?gtter 1973). These
widths were chosen here to meet this stability conditiométi 10~3 h, space:

3 um, fastest propagation velocity: 80 pum h™1).

Fig. 4.4 A,B presents the simulation results under the apiomof one mo-
tor, while Fig. 4.4 C,D shows the results for two motors. Bo#ises showed a
similar distribution ofx, composed initially of one peak located at the site of pro-
duction, which reduced intensity in time and gave rise tocséd broader peak
(Fig. 4.4 A,C). The second peak can be contributed to adw@ctnvection of
curvature (Silk and Erickson 1978; Silk 1989), as becomeardrom the move-
ment of its maximum. The first peak is due to production andigtance to the
quiescent center is thus constant. A change in the inteositye first motor is
essential for the existence of the second peak. If no chamigeensity would oc-
cur, growth dilution [compare Eg. (4.2)] would ensure thayénd the curvature
motors the distribution of would fall monotonically without having a second
maximum. Measurements akepidiumandPhleumroots confirm the existence
of a moving and a fixed peak (Selker and Sievers 1987; Ziegchad Sievers
1991). Wolverton et al. 2002a interpreted those two peakbBeasvo motors of
gravitropism. However, the simulations presented hergvghat both cases, of
one and two motors, exhibit this behavior. Thuss insufficient to show the ex-
istence of two motors that are located so closely.

The rate of change of curvatudex, which could erroneously be interpreted
as a measure of curvature production [compare Eqgs. (4.2]48}, fails also
to show a clear separation of both motors (Fig. 4.4 C,D). df distribution of
r is determined with a low resolution, which has been the casgetd technical
reasons (e.g. Selker and Sievers 1987; Zieschang and Si8&t), the existence
of one or two motors cannot be definitively determined using(Figs. 4.4 B,D).
Both cases show due to growth dilution a simila& pattern. For the case of two
motors, the second motor appears strongly reduced, sohatattern may be
interpreted as a slightly wider motor (Figs. 4.4 D). Curvatproduction may in
general be underestimated around the elongation maxiniuhy is assumed to
be a measure of production.

In contrast tox and d;x, the DGCR shows clearly either one or two mo-
tors (Figs. 4.4 B,D). The theoretical results found abowecanfirmed here; the
DGC R measures the production of curvature and emphasizes theoiars in-
dependently of growth dilution. A hint for the specific fuiet of the two motors
is also found here. The model shows that the first motor, éacathere growth
dilution is small, has a key role in curvature initiation, ilelthe second, located
where growth dilution is maximal, is crucial in maintainingrvature (Fig. 4.4
D). Note that the model presented here is not able to diffewéen one motor
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Figure 4.4: Simulated curvature and rate of curvature along a root axidistribution of curvature: along a root axis, under the assumption of
one gravitropism motor located at thestal elongation zon€DEZ). B, distribution of rate of change of curvatuigs (solid line) anddifferential
growth curvature rateDGC R (dashed line). One motor located at the DEZ is assumed tcspemsible for curvature. C, distribution @funder o
the assumption of two gravitropism motors located at the REd at thecentral elongation zonéCEZ). D, distribution ofd;x and DGC R. Two
motors located at the DEZ and CEZ are assumed to producetareva
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with a large spatial extension and two spatially separatetbra. This question
can only be answered experimentally, through investigafithese cell groups
are either controlled by two different sensors (Wolvertbmale 2002a; Wolver-
ton et al. 2002b), or regulated through different phytohames (Aloni et al.
2004). Nonetheless, the model shows that a better measuatewafture produc-
tion (DGCR) is essential to elucidate this.

The DGCR was defined as the slope of the tropic speed distributich =
d;a(s) [EQ. (4.4)], and is thus analogous to tRé/G R, defined as the slope of
the velocity distributiorw(s). Such an analogy between translational and rota-
tional movement is well known in physics (e.g. Halliday aresRick 1988). The
DGCR can be interpreted as follows. A rigid body can only move byanseof
a translation and/or a rotation. Because it is rigid, anyna element of it ro-
tates with the same angular velocity. In non-rigid bodieshsas graviresponding
roots and hypocotyls, the angular velocity changes in spaflecting deforma-
tion. In cylindrical organs, the tropic speeds an angular velocity and variations
of it in space reflect curvature, which production is quaetitoy theDGC R. The
DGC R represents the amount of curvature angle produced peengith and unit
time? Curvature angle kinetics of root segments have been useitivety be-
fore to characterize the gravitropic reaction of roots (Klet al. 1998b; Mullen
et al. 2000; Wolverton et al. 2002a; Wolverton et al. 2002)wever, these do
not allow a quantitative determination of curvature prdaug although this is es-
sential to understand the control and signal pathways detifferential growth.
This gap is filled by thelifferential growth curvature ratd) GC' R, and should
thus serve as a helpfull tool for future measurements.

4The DGCR can be expressed either in radians or in degrees per unthlangl unit time.
Radians should be used, when a comparisah tas sought for.



Chapter 5

Root Gravitropism

In Chapter 3 we presented a one-dimensional model of roettrcAbundant bi-
ological data was available to synthesize this model (Eookand Sax 1956; Silk
et al. 1989; Walter et al. 2002). Roots however vary substiiywtrom a one-
dimensional structure, they tend to curve, to circumnuytatéollow gradients of
nutrients and humidity and, not to forget, to grow towards tlirection of the
gravity vector (e.g. Blancaflor and Masson 2003; Eapen e2@05; Walter and
Schurr 2005). This encourages to expand the model presen@&tapter 3 into
two or three dimensions. However, in contrary to the oneetlisional case, no
extensive biological information is available, althougistdata is a prerequisite
to model root growth. We therefore chose to investigate hamw growth reacts to
gravitropic stimulation. Aim was here to obtain data as aatmuas possible and
suitable for future modeling. This needed, however, a darable extension of
the growth analysis methods available (Walter et al. 2002).

This chapter is divided into three sections. The first is dogjcal introduc-
tion into root gravitropism (Section 5.1). The second déss the analysis of
curvature (Section 5.2, based on Chapter 4). And finallyti®@e6.3 is dedicated
to the overall characterization of the gravitropic reattioased on measurements
of wild-type and PIN3 deficient mutants.

5.1 Introduction

Root gravitropism has been a topic of research for a long. titeough thesine

rule? was formulated more than 120 years ago (Sachs, 1882), thelemmech-
anism of root gravitropism is still unclear. In the last ye#ne polar transport
of the plant hormone auxin in roots has been extensivelysinyated (Muday
2001; Friml and Palme 2002; Friml et al. 2002; Blancaflor anaisbbn 2003;

1The PIN3 efflux facilitator protein is involved in relocatiof auxin from the central root
stele to the epidermal and cortical cell files, and is esakintthe gravitropic signal transduction.
2Classical sine-law: the gravitropic stimulus is propartibto the sine of the inclination angle.

61
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PIN3 | PIN3

PIN2
PIN2

g J (O Apical meristem

@ Columella cells
PIN3

Figure 5.1: Simplified auxin transport model. During the gravitropiacgon,
auxin is preferentially transported into the lower sidehaf toot inhibiting growth

and resulting in curvature. The curvature anglg, between the root tip and the
horizontal is shown.
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Figure 5.2: Curvature kinetics oArabidopsis thaliangL.) Heynh. roots. The
curvature anglexr;, between the root tip and the horizontal is shown.
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Blilou et al. 2005; Teale et al. 2005). The current transpwstiel, denominated
fountain-modelis based on influx (AUX/LAX) and efflux (PIN) facilitator pfo
teins located on the plasma membrane (Muday 2001; Friml ahdd>2002); Per-
bal and Driss-Ecole 2003). It assumes that auxin is tramspapically around the
central cylinder by PIN1, apically near the columella by Rldading to accumu-
lation, radially from quiescent center towards the cortgPbN3 and basipetally
in the cortex towards the expansion zone by PIN2 (Fig. 5.an&flor and Mas-
son 2003; Blilou et al. 2005; Teale et al. 2005).

One of the central statements of the fountain-model is thanhwgravitropic
stimulation PIN3 is asymmetrically reallocated in the coélla cells. Auxin
transport towards the cortex cells occurs then preferdgntethe lower side of the
root upon gravitropic stimulation (Fig. 5.1; Blancaflor avldsson 2003). There-
fore, in the lower side more auxin is transported towardsetkgansion zone,
leading to growth inhibition and to the actual bending (EBlaftor and Masson,
2003). Perception of gravity is believed to be accomplishdéble columella cells
by sedimentation of statoliths (Blancaflor and Masson 2@#&n et al. 1999;
Perbal and Driss-Ecole 2003However, hints of gravisensitivity outside the col-
umella exist (Wolverton et al. 2002a; Wolverton et al. 2004dltne chain of events
between perception and reallocation are still not known.

Friml et al. (2002) found that roots qdin3 mutants, which lack the PIN3
protein? react considerably slower to gravitropic stimuli than wiijghe roots do.
However, the question of why these mutants still react toieatation has not
been answered. Based on the fountain-model, no asymmedtigan redistri-
bution is expected ipin3 roots. Thus, either other auxin transport proteins are
involved or roots use auxin independent pathways (Aloni.e2804). The ex-
istence of dual motors and sensors of gravitropism have pesposed recently
(Wolverton et al., 2002a), and might explain wbin3 mutants still react.

Measurements of gravitropic reaction have been conducéelitibnally by
determining the kinetics of the curvature angle (Fig. 5.arden 1957; Johns-
son 1965; Perbal et al. 2002; Wolverton et al. 2002a). Laf$8567) proposed
the empiricallogarithmic modeko describe the curvature kinetics. It states that
the increment in response is proportional to the relativeement of the dose.
The existence of @resentation timeminimal duration of stimulus to induce a
response, is a consequence of this model. The presentatierhais been used
to characterize the sensitivity to gravitropic stimuliri®a et al. (2002) proposed

3Statoliths are specialized amyloplasts composed of deaserials (starch in roots, barium
sulfate crystals in Chara rhizoids), and have a central mdesedimentation bodies, in gravity
perception.

4The convention used in molecular biology to designate mistanto name them after the
missing product. These are then written lowercase andstalvhile the product itself is written
roman and uppercase. For exampli@3 is the mutant that lacks the protein PIN3.
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the hyperbolic modelin which the response is limited by a ligand-receptor sys-
tem, which fits the data more accurately. In contrast to tgarithmic model, the
hyperbolic model does not involve a presentation time. @toge, the slope of
the curve at the origin was proposed as an index of gravitreensitivity. It is
easily shown that neither the logarithmic nor the hyperdomiodel are accurate as
neither of take growth, the mediator of curvature, into a6

Although the kinetics of curvature are an important tool iforestigation of
gravitropism, they are in their traditional form not suitedobtain information
about the distribution of curvature production. Howevestedmining the cell
groups involved in gravitropic bending is essential to usténd the gravitropic
response. Attempts have been made to deduce curvature li@msymmetri-
cal distribution of growth among opposite cell lineagesngldhe root growth
zone (Ishikawa et al. 1991; Mullen et al. 1998a; Zieschang.efL997). This
method gave insight into the location of curvature productiThe distal elonga-
tion zone (DEZ), a group of cells between the meristem anddhe of maximum
elongation, is believed to be responsible for curvaturgaition (Ishikawa et al.
1991, Ishikawa and Evans 1993; Ishikawa and Evans 1997 edei al. 1998a).
Along with the DEZ, the central elongation zone (CEZ), a ztweated around
the elongation maximum, has been reported to be involvedivature produc-
tion (Wolverton et al., 2002a). However, this method isingically susceptible to
errors, because it makes assumptions on the root geomeinys Riffer consider-
ably from a cylindrical body, so that the question arises pogitions on different
cell lineages are matched.

5.2 Advances in curvature analysis

Although the measurements of gravitropic reaction evoludaktantially in time,
from hand measurement of curvature angle to automatedzgigtystems (Sachs
1882; Mullen et al. 1998b), all suffered from a low spatioiporal resolution of
growth and curvature analysis. This problem can be dealt ytapplying and
adapting novel high resolution growth measurement metti8demundt et al.
1998; Walter et al. 2002; van der Weele et al. 2003). Thes@adsthave been
successfully used to characterize differential reactain3 G R distributions to-
wards changes of external parameters (Walter et al. 200@ek¢h al. 2003), and
suit, together with the results of Chapter 4, the problemhairacterization of the
gravitropic reaction.

5A consequence of Egs. (4.5) and (4.8) in Chapter 4, is thatfection point in the curvature
kinetics has to be present (clearly present in Fig. 5.2). él@w neither the logarithmic nor the
hyperbolic model contain this behavior.
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Using differential growth to determine the gravitropic ¢gBan is not a new
concept (Selker and Sievers 1987; Zieschang et al. 1997eMaetl al. 1998a).
However, the traditional method to measut& G R distributions contains some
pitfalls, because it relies on a relatively small amount @afrkers. TheREGR
distribution is acquired by applying interpolating schemehich give rise to a
large variation margin in the resulting distribution (Retand Bernstein, 1997).
The method used here for calculation of tRe€'G R achieves a much higher spa-
tial and temporal resolution (see e.g. Figs. 5.9 and 5.10age$ 75 and 76).
Moreover, the determination of curvature production tigtodifferential REGR
profiles is prone to errors, because the coordinates of therignd lowelREGR
profiles have to be matched correctly (non-trivial for cutveot geometry, com-
pare Fig. 5.4 on page 70). The method used here uses the rwaterdiystem of
the root mid-line and avoids this problem a priori.

A new concept of curvature production, tgferential curvature production
rate (DGC R; Chapter 4), has to be introduced to give considerationgattu-
racy needed in determination of differential growth upoavifropic stimulation.
Until now the kinetics of curvature angle, e.g. Fig. 5.4 og@&0, have been the
sole concept used to characterize the intensity of theicgacthese have been ex-
tended to obtain spatial information by tracking of the angflsegments (Mullen
et al., 1998b). However, curvature angle is not sufficierahitain reliable infor-
mation on the location of curvature production. We themfpropose here the
concept of theDGC R according to the relative elemental growth ra&-G R),
which has been used successfully in root growth for decadeskéon, 1976).
This new concept of curvature production and the high sgatigporal resolution
of the applied method extend the set of essential tools weaadducidation of the
molecular mechanisms behind curvature initiation.

5.2.1 Calculation of spatio-temporal distributions

The spatio-temporal distributions of relative elementavgh rate R£G R) and
the differential curvature productioW(GC'R), are determined using several steps:
a) determination of velocity field, b) regularization of weity field, c) tracking of

a curveyp, d) calculation ofR EG R and DGC' R profiles on the curve.

Velocity field

The velocity of each pixeli, k) at framem, is determined using thstructure
tensor metho@Biguin and Granlund 1987; Haul3ecker and Spies 1998; Schhmund
et al. 1998; Walter et al. 2002). The discretization of tmactire tensor method

is done via differentiation filters optimized for direct@raccuracy of the gradient
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(Scharr, 2005). These filters are essential for the highigicecof the estimated
optical flow fields required for subsequent processing steps

Regularization

Under normal circumstances, this method does not delivesalgelocity fields,
e.g. when an image region lacks sufficient grey value stractiihus, to obtain
a dense velocity field, a regularization, meaningful fillofgnissing information,
has to be performed. The regularization was implementedasmalized convo-
lution (Jahne, 1997).

Curve tracking

After obtaining the velocity of each pixel, the velocity figk interpolated to be
able to track points between pixels. A linear interpolaticas chosen, as the ob-
tained velocity field is smooth and a higher interpolatiodesrdoes not render
additional accuracy. The position of any chosen point catrdiked in time by
using anEuler-SchemégStoer and Burlisch, 2000a). This can be used to track
any curvey, e.g. the root mid-line, by discretization @finto a set of V' points
¢;. Each pointy; is tracked in time, so that an approximation of the cugpve
at each frame is obtained. The poigts and their positions in each frame are
subsequently processed to obtain the spatio-temporabdisbns of REG R and
DGCR. For all measurements, the initial poipg of ¢ is chosen at the transition
between quiescent center and apical meristem, i.e. theopnécenter and the
calyptra are not tracked.

5.2.2 Relative elemental growth rate

To obtain theR EG R spatio-temporal distribution, the distangédetween points
w,; and;; is calculated for each frame (refer also to Chapters 2 andlrBg
REGR of the length elemen is

1

J
and is used to obtain the spatio-temporal distributioR 861G R (compare Fig. 5.9
on page 75). Thé& EGR can also be defined as the derivative of the projection
of the velocity field onp: REGR = 0,v. Eq. (5.1) allows a simple but effective
time averaging (Peters and Bernstein, 1997)

1T 1T 1 ,
0 0 .
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A B C
Arc length

Time

Figure 5.3: Denoise of spatio-temporal data. The x-axis represents arc
length (distance to quiescent center) and the y-axis timeesieorien-
tation, color and height display intensity of scalar data.amd B, raw
curvature angle and raWGC'R distributions. C, denoise®GCR dis-
tribution.

whereT is the time over which averaging is done. Eq. (5.2) uses dmyiriitial
and final length. If a coordinate;;, y;) is assigned to each length elemgnEgs.
(5.1) and (5.2) provide raw and time averagel G R profiles onp. See Fig. 5.10
on page 76 for an example result of the averaging methodahzzd usingvTK,
Visualization ToolKit, Kitware, Inc., New York, U.S.A.).

5.2.3 Differential growth curvature rate

An approximation of the curvature angle distribution aldhg root is easily ob-
tained through the curve poings. The derivative in time of the curvature angle
gives the angular velocity, which is a measure of the ratehahge of an angle.
The angular velocity can be calculated for each segment — ¢,

w; = dyaj (5.3)

whereq; is the curvature angle of the segment andhe corresponding angular
velocity. A rotating rigid body has an uniform angular vetgcwhile the angular
velocity along a curving body varies in space. In analogyheoREG R, the dif-
ferential curvature productioPGCR is defined as the divergence of the angular
velocity

DGCR; = dyw; ~ %f%z%l—l . (5.4)
J J—

This gives the amount of curvature degrees produced pelemgith and unit time.

5.2.4 Denoising of spatio-temporal distributions

REGRandDGC R are obtained through derivatives [Egs. (5.1) and (5.4)gréh
fore a small disturbance in the velocity field expands to gdarror inREGR



68 CHAPTER 5. ROOT GRAVITROPISM

and DGCR (Fig. 5.3). Several methods to reduce noise are availatéekEnd
Rangarajan, 1996). We chose to use a diffusive approacéd lmasthe minimiza-
tion of a functional composed of a data and a smoothness tmmgare Black
and Rangarajan 1996, Eqg. (1)]

J(u) = /(u — Ugrig)? dz + A / |Vul|? dz — min , (5.5)

whereuw is the smooth solution and,,;, is the original data. Depending oy
the solution is either smoother, or it is nearer to the odafimoisy data. The
minimization process is achieved using an iterative schefgg 5.3 shows the
effect of Eq. 5.5 on thé)GC'R of a selected root during the gravitropic reaction
(reorientation b0 °).

5.2.5 Normalization and averaging of distributions

Due to natural variations of root growth within one planteljrthe distribution

of REGR and DGC'R have to be normalized to be able to produce meaningful
average spatio-temporal distributions. Normalizatioadkieved by the transfor-
mation

REGR/ — REGR

REGRmaz
/' _  _DGCR
DGCR' = BGCR, o (5.6)
/ _ r—X
r = =

g

whereREGR' andx’ are the transformed relative elemental growth rate and posi
tion, REGR,,.. is the maximal growth ratd)GC R,,,... is the maximal curvature
production ratey, is the position of the growth maximum aidis half the full
width at half maximum. Eqg. (5.6) transforms tlhG R distribution such that
the maximum, located at position zero, has a value of oneltendistribution has
a full width of one at half maximum. The normalized distrilouts of different
roots can then be averaged without artificial flattening eslof form. The aver-
age distribution can subsequently be de-normalized ubmgiean normalization
coefficients. Eq. (5.6) is a spatial normalization, but we @so interested in the
temporal evolution. If the normalization process would ppleed at each frame,
the temporal evolution of the spatial distribution would st. We chose thus
to use a reference spatial distribution to normalize théalggistributions in each
frame. For each measurement, the reference frame is otitajnaveraging of
the REGR distribution during the response. After determinationhef teference
frame, the measurement is normalized and the average dveeasurements is
determined. The average spatio-temporal distributioosare Fig. 5.9 on page
75) can be used to obtain either the kinetics through spategration (Figs. 5.5
and 5.6 on page 71) or the average spatial distributionsigfirantegration in time
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(Figs. 5.7 and 5.8 on page 72).

5.3 Characterization of root gravitropism

In this section the results of Chapter 4 and the Methodosdgidvances described
in Section 5.2 are applied to characterize the gravitraggaction of wild-type and
mutant roots. Based on the determination of optical flow af/gralue structures
through image sequences, we mapped the gravitropic rovattue of individ-
ual roots by introduction of a novel curvature productiomuggification method.
Averaging of the individual data sets allowed to determime gpecific contribu-
tion of PIN3 to growth along the growth axis. We demonstratg two spatially
separated cell groups are responsible for curvature ptiothugpon stimulation,
and identify these cell groups with the two motors of grapism proposed re-
cently (Wolverton et al., 2002a). Additionally, we demaast that only one of the
motors depends on PIN3, suggesting that the other motorsisdban a different
pathway (compare Aloni et al. 2004).

5.3.1 Kinetics of growth and curvature

Analysis of kinetic changes of curvature angle and inspactif the images of
both wild-type and mutant roots showed that3roots curved substantially slower
than wild-type (t) roots (Fig. 5.4). While wild-type roots curved 59° within
the first3.5 h of reaction pin3 mutants reached oniy7°. The gravitropic reaction
was accompanied by variation in root growth velocity, ilee velocity by which
the root tip moves away from the non-growing basal region.

Reorientation of wild-type andin3 roots reduced growth velocity in both or-
gans (Fig. 5.5). Growth velocity of wild-type roots declkihgignificantly during
the first hour reaching a minimum, but recovered during ttieweng 3 A to al-
most the original velocitypin3 roots however recovered substantially slower over
4 h before the original growth was resumed (Fig. 5.5). This sgggthat the
growth rate ofpin3was essentially modified.
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Figure 5.4: A and B, Selected wild-type angin3 roots before and.5 h after
reorientation by0°. C, Curvature angle kinetics of wild-type apth3roots after
reorientation by90°. The standard errors for evetyp-th data point are shown
(wild-type: n = 6, pin3: n = 5).
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Figure 5.5: Root tip velocity kinetics of wild-type andin3roots after reorienta-
tion by 90°. The standard errors for evety-th data point are shown (wild-type:
n =6, pin3: n = 5).
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Figure 5.6: Evolution in time of the angular velocity of the root tip of lditype
andpin3roots during gravitropic response (rotateddy). The standard errors
for every15-th data point are shown (wild-type: = 6, pin3: n = 5).
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Figure 5.7: Average relative elemental growth rate fG R) spatial distribution of wild-

type andpin3 roots during the firstt h of gravitropic stimulation (rotated b§0°). The
standard errors for eveiys-th data point are shown (wild-type: = 6, pin3: n = 5).
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Figure 5.8: Differential growth curvature ratel{GCR) spatial distribution of wild-
type andpin3 roots rotated by0° (average over the firgt i of gravitropic stimulation).
The central and distal elongation zones (CEZ and DEZ, réispgQ are depicted for
comparison. The standard errors for evébyth data point are shown (wild-type: = 6,
pin3: n = 5).
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The angular velocity (i.e. the slope of the curvature anghetics, see Fig.
5.4) of the root tip gives information on the rate of curvataf the root. As
shown in Fig. 5.6, analysis of the angular velocity revehl the reaction of
wild-type roots was composed of three phases, during whghilar velocity in-
creased distinctly in the first and second hour followed byase of decreasing
angular velocity fron2 » onwards. A maximal angular velocity was reached ap-
proximately2 h after reorientation (Fig. 5.6). The transition from thetfirdo the
second phase coincides with the minimum of root tip velogity after rotation;
Fig. 5.5), suggesting a coordination between curvaturegrodth slowdown.
pin3lacks the second increasing phase; a sustained phase tditoausgular ve-
locity was found instead (Fig. 5.6). Reduction of anguldoery occurred3.5 h
after rotation irpin3roots, whereas wild-type roots reduced their angular visloc
already2 h after rotation. As the initial curvature phases of wild-¢ygndpin3
roots are comparable, we conclude that the gravitropicature is mediated by
two distinct responses, one being PIN3 dependent and armibd’IN3 indepen-
dent. This coincides with earlier hypotheses in which thisterce of two motors
of gravitropism had been proposed (Wolverton et al., 2002a)

The average spatial distributions of relative elementaiwtin rate REGR,
Eqg. (5.1) in Section 5.2] in wild-type angin3 roots before and after reorienta-
tion of the roots byd0° are shown in Fig. 5.7 (average oveh of 11 gravitropic
reactions). Bell-shape® EG R distributions with distincgrowth maximawvere
found in both wild-type angin3roots before and during gravitropic stimulation.
Before reorientation, the growth distribution of thie3 roots was apically shifted
to a narrow region close to the quiescent center with a retloeximal growth
intensity REG R,nq. Wt 33 % k™ pin3: 28 % h~!), and a reduced growth zone
length (75% of the wild-type). The growth maximum @in3was also shifted to-
wards the quiescent centevt@t298 pm andpin3at239 pm). Similar differences
between wild-type angin3 roots were found after reorientatiowt{ 25 % h~" at
271 pm; pin3: 17 % h~! at 224 wm). Reorientation had similar effects on the
REGR distribution of wild-type angin3, composed of a significant reduction in
REGR,,., and an apical shifting of the growth maximumit(reduction:75% of
orig. growth and1% of orig. position;pin3: 61% of growth an4% of position).

The average spatial distribution of differential growtmature rate DGCR,
Eq. (5.4) in Section 5.2) during the gravitropic responsevibdi-type andpin3
roots is shown in Fig. 5.8 (average of 11 roots and over thiedfiksof response).
Both roots increased theinGC R within the first100 pm behind the quiescent
center. While wild-type roots maintained a more or less tanmsintensity of
60 °mm~! h~! betweenl00 pm and250 wm behind the quiescent cent@in3
roots reached a maximum 66 °mm—'h~! at 120 um and decreased intensity
towards the base of the growth zone. This suggests that #téage phases are
spatially separated (compare also Fig. 5.6). Comparis@umfture production
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Table 5.1: Mean normalization coefficients of relative elemental giow
rate (REGR) and differential growth curvature rate)(GCR) distri-
butions of wild-type andpin3 roots. Normalization: REGR =
REGR/REGR4y, DGCR' = DGCR/DGCR,,, andz’ = (z —
x9)/o, where REGR,,,. and DGCR,,,, are the maximal values of
REGR and DGCR, x is the position of the growth maximum arnd
is the full width at half maximum of the expansion zone. Thensdiard
errors are shown (wild-typet = 6, pin3: n = 5).

Plant o o REGR,ux DGCR, oz
(pm) (pm) (%h~h)  (Cmm 'R

wild-type 271 +8 169 + 17 2542 63 4

pin3 224 +£17 12949 17+ 3 51 £8

with the growth distributions shows that curvature ocodiapically of the growth
maximum in both roots. The location of curvature initiatoid not depend on the
position of the growth maxima. However, wild-type roots gwoed a substantial
amount of curvature almost at the growth maximum, in cobhtrmagin3 roots.

Fig. 5.9 presents a comparison of the spatio-temporalioligion of REGR
and DGCR of wild-type andpin3 roots during the gravitropic response (reori-
entation by90°). The x-axis corresponds to the spatial coordinate (digt@rom
guiescent center), while the temporal evolution is dispthglong the y-axigin3
roots had a smaller expansion zone and recovered sub8iesitaver than wild-
type roots. The spatio-temporal distribution0t7C' R shows that the length of
the curvature zone and the position of maximeFC' R varied in time (Fig. 5.9).
During the first phase (fromd / to 1 &) the curvature production zone of wild-type
roots shifted and extended basally. Around the transiiime between the first
and second phase (), the curvature zone extended basally within a short time
into a region that was more than twice as large as before. Eroto 3 / the cur-
vature zones overlapped, until arouhd the intensity of the first zone (denoted
by apical curvature zone; from00 um to 200 pm) was drastically decreased.
The second curvature zone (denotedasalcurvature zone, locateth0 um to
300 um behind the quiescent center) curved with similar intenaitg shifted
slightly towards the base of the rogtin3 roots, however, showed a completely
different spatio-temporal distribution of curvature puotion (Fig. 5.9). The basal
curvature zone was absentpim3roots, while the apical curvature zone was still
present. This suggests that the apical curvature zonegspmnding to the first
phase, is not regulated by PIN3, while the basal curvatune zcorresponding to
the second phase, depends on PIN3. A color coded reprasaragfthe average
REGR distribution along the growth zone and across the width ¢d-tyipe and
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Figure 5.9: Spatio-temporal distribution of relative elemental growtate
(REGR) and differential growth curvature rat&(GC R) of wild-type andpin3
roots during gravitropic response (reoriented#y). The z-axis represents the
coordinate along the root starting at quiescent centelgwhe y-axis represents
the time since reorientation. The intensity®f’G R and DGCR is represented
as a change in coloration. (wild-type:= 6, pin3: n = 5).
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Figure 5.10: Color coded average relative elemental growth r&e'¢ R) distri-
butions of selected wild-type amdn3 roots during gravitropic reaction (reorien-
tation by90°). Growth is depicted through coloration and height of theasies
shown on the right. The averages are over the first hour, fhenfitst to the third
hour and from the third to the fifth hour after reorientatidrnese are projected
on original images, which are shown on the left sidel(at 1 » and3 h). Dif-
ferential growth between the sides of the root producesature. The higher the
asymmetry is, the more curvature is produced.
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pin3roots, shown in Fig. 5.10, illustrates this observationthBoots were rotated
by 90° and their growth distribution averaged using Eq. (5.2) dhlerfirst hour,
from the first to the third hour and from the third to the fifthunoln this depic-
tion, it can be shown that curvature was produced by diftgkgrowth between
the sides of the root. During the first hour, the asymmetryrowgh between the
upper and bottom side of the roots was similar in the wildetgmdpin3 roots.
Both roots showed a strong asymmetry in growth intensitgalpif the growth
maximum (apical curvature zone). From one hour to threedydbe plants dif-
fered substantially in overall growth intensity and gromymmetry (Fig. 5.10).
The wild-type root substantially reduced growth and creéastrong asymmetry
between the sides, reflecting a higher curvature produgb@anticularly in a more
basal part of the growth maximum (basal curvature zoneJeEiftial growth also
curved thepin3root, but slowdown and growth asymmetry were substantiedy
than in the wild-type root. From the third to the fifth hour gttt increased again
accompanied by a reduction in growth asymmetry in both plant

As mentioned in Section 5.2.5, the growth distributiong(/5.9) are normal-
ized to obtain an average distribution with conserved fofiable 5.1 shows the
average normalization coefficients used in the normabmakqs. (5.6). Upon
usage of these average parameters, the average normabadiolition was de-
normalized through the inverse of Egs. (5.6).

5.3.2 Discussion

Differential growth inpin3 roots is disturbed due to the missing PIN3 protein,
which explains their defective gravitropic response (fFetral., 2002). Our mea-
surements confirmed this behavior, and showed that kineficsirvature angle
differ substantially between wild-type amuin3 roots (Fig. 5.4). However, the
kinetics of curvature angle do not suffice to understand ffexts of PIN3 on
differential growth. We therefore had to define a new analyisased on spatio-
temporal data (Figs. 5.6 and 5.8 to 5.10). Wild-type rootsasdd two phases of
increasingDGCR: from 0 h to 1 h and from1 h to 2 h followed by a phase of
decreasing)GCR (Figs. 5.6 and 5.10). An apical curvature zone, which exdend
from 100 pwm to 200 um behind the quiescent center, is associated to the first
phase, while the second phase is associated to a basalserzane located from
200 pm to 300 um (Figs. 5.8 and 5.9). Concomitant activation of both curxatu
zones is reflected by a highGC R betweenl h and3 h, while inactivation of the
apical curvature zone results in a reduction of curvatute (faBom 2 h on; Figs.
5.6 and 5.9). The apical and basal curvature zones may tdedthe two mo-
tors of gravitropism hypothesized recently (Wolvertonlet2002a). Until now,
the distal elongation zone (DEZ), a zone empirically defiteede between the
meristem and the growth maximum (Ishikawa and Evans, 19%83,thought to
be the location of the first motor (Ishikawa and Evans 1997liéwet al. 1998a;
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Wolverton et al. 2002a). Growth distribution on the uppelesof A. thaliana
roots was found to be inhibited near the growth maximum anshtti apically,
leading to the conclusion that the DEZ was responsible forature production
(Mullen et al., 1998a). Although we found the apical curvataone to have a
maximum atl20 um (Fig. 5.8), it is still unclear if the apical curvature zoneda
the DEZ coincide. A determination of the DEZ through the gitowistribution
is difficult in A. thalianaroots, due to a uniform elongation in the meristem and
an abrupt acceleration in the elongation zone (Fig. 3.1 ge 24; van der Weele
et al. 2003). The apical curvature zone seems rather to la¢eld@t the basal
meristem, where cell expansion and division overlay (Beent al., 2003). The
second motor was hypothesized to be at the central elomgadite (CEZ), a zone
located around the growth maximum, as it also had been egptotbe responsi-
ble for curvature production (Selker and Sievers 1987; \&bn et al. 2002a).
However, neither had the location of the motors been cledetgrmined yet, nor
had their actual existence definitively been proven. It wassible here for the
first time to characterize the intensity of curvature prdoturcin time and along
the roots, demonstrating the existence of the motors andiall) a determination
of their location and time of activity (Fig. 5.9). The use ofdckout mutants al-
lowed additionally to show that the basal curvature zonedisé motor) depends
strongly on PIN3, while the apical curvature zone (first nnpte not affected
by the absence of this protein (Figs. 5.6, 5.9 and 5.10). Welade therefore
that auxin mediates the basal curvature zone. However,ighalspathway in-
volved in the first motor is still unclear, although hints #possible cytokinin
dependency exist (Aloni et al., 2004). As auxin, cytokirsrasymmetrically re-
distributed upon gravitropic stimulation. Because cytirkreduces meristematic
activity in the root (Werner et al., 2003), an asymmetridribsition of mitosis
upon stimulation is expected and has been confirmed by nerasuats (Wagner,
1937). Our results show a growth asymmetry in the root memsturing the first
3 h of reaction (Fig. 5.10), confirming an adaptation of cellision, as cell cy-
cle duration and meristematic growth are tightly bound iotsqBeemster et al.
2003; Chavarria-Krauser and Schurr 2004). The root apiesistem has to de-
liver enough cells to keep the expansion zone stable (Begrasal., 2003), so
that the first motor could be an adaptation of the meristenaativity to the fol-
lowing cell consuming second motor. We found not only a disd differential
growth inpin3roots, but also a reduction of overall growth caused by alemal
expansion zone (Fig. 5.7). As PIN3 is involved in the axidis&ibution of auxin
in the columella cells, the absence of this protein couldyntipat auxin accumu-
lation is higher inpin3roots. A smaller expansion zone is consistent with this, as
has been shown by application of auxin and confirmed by a ¢tieat approach
(Beemster and Baskin 2000; Chavarria-Krauser et al. 200&)did not find a
correlation between the positions of the first gravitropimimtor and the growth
maximum (Fig. 5.8), suggesting again an auxin-indepenahenor.



Chapter 6

Lateral CO5 Diffusion Inside Leaves

6.1 Introduction

Leaves have a complex inner structure composed of sevemaislgFig. 6.1).
These inner structures of leaves are not densly packed taderthe photosyn-
thetically active tissue with sufficient GO Stomata control the gas exchange
between the leaf and outer air. These are regulated by emental constrains
mainly CO, and water availability (Farquhar and Sharkey 1982). Theopitagdl,
as the photosynthetically active tissue, consists of @dégissue with longitudinal
cells more densly packed than the loose spongy tissue. Madmndles, respon-
sible for water and nutrient transport, are located withsrmesophyll tissue. The
vascular bundles are often surrounded by bundle sheates(ge Esau 1977),
which in some species range from the upper to the lower epideseparating air
spaces inside the leaf. Leaves with such extensive bundkglshare designated
as heterobari¢ while leaves without ar@omobaric(Neger 1912; Neger 1918;
Fig. 6.1). In homobaric leaves the air spaces may be corthextempose large
and extensive air compartments, in which gas diffusion ne@ypover larger dis-
tances than in heterobaric leaves. Homobaricity can tbexrefnhance the lateral
supply of CQ, which in turn may affect photosynthesis and net,@&change
of leaves (Pieruschka et al. 2005a; Pieruschka 2005). Thetein photosyn-
thesis has been currently discussed in literature (comidaréson et al. 2005;
Pieruschka et al. 2005a; Pieruschka et al. 2005b).

One crucial step towards determining the relevance ofdatbffusion, is the
accurate determination of the diffusivity inside the le@he structure of the air
spaces in the parenchyma is complex and irregular (Fig.. Gldjvever, the air
spaces are small compared to the characteristic lengths ialCO; assimilation
patterns, allowing to use lmomogenized diffusion coefficieRtto model lateral
CGO, diffusion. There are no direct experimental methods to nreathe lateral
diffusion coefficients. Mainly two approaches have beerduséther through
measurement of lateral G@luxes using double-gasket leaf chambers (Pieruschka
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Figure 6.1: Cross sections of: A, heterobariGlf/cine max and B, ho-
mobaric {icia fabg leaves. UE: upper epidermis, P: palisade tissue, VB:
vascular bundle, BS: bundle sheath, BSX: bundle sheatm&ixie S:
spongy tissue, LE: lower epidermis. Photosyntheticaltivadissues are
marked green. Images adapted from Pieruschka 2005.

0.8

Measurement
Improved model
Old model

‘D

Imbroved model
Old model

T
O
X

X

Ppg)

" % 1 0.05
|o QDDDDDDQE o o o 1o
X X x
X XX
10 15 20 25
CO, partial pressure C;/ Pa

1 -0.05
35

30

30

10 15 20 25 35 5
CO, partial pressure C; / Pa

0 5

Figure 6.2: Quantum yieldd pg;; calibration models. AP ps;; measure-
ment compared to model proposed by Morison et al. 2005 ancoweg
model. The cross represents the measured compensatidnpomodel
residuals.

et al. 2005a), or througbhlorophyll fluorescence imagingpupled to a mathe-
matical model of lateral COdiffusion (Galloét and Herbin 2005; Morison et al.
2005). The first relies on concentration gradients betwleetwo gaskets and uses
differences in net CQexchange rates to determihe(Pieruschka et al. 2005a).
These experiments have to be performed in darkness to anerfiarences of pho-
tosynthetic CQ uptake and photorespiratory G@volution in light. The second
is based on the measurement and calculation of €@centration profiles, which
are then used to determirdethrough minimization of a suitable error functional
(Galloét and Herbin 2005; Morison et al. 2005). Here, therlatas chosen in or-
der to measur® and estimate the impact of lateral €fluxes on photosynthesis.
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Quantumyield ®,y 0.1 0.65

Figure 6.3: Chlorophyll fluorescence image of\acia fabaleaf with a
greased area, where gas exchange is prevented. The quaatddys;;
is shown overlaid on the visual image.

6.2 Calibration model

Gas exchange measurements deliver only average leafaht€@ concentra-
tions. To obtain spatial concentration patterns one haslyoon chlorophyll fluo-
rescence imaging (Morison et al. 2005). The chlorophyllrisgence parameter
Qpsir = F,/F,,, also known agjuantum yieldis a measure of the proportion of
light energy (absorbed by photosystem Il) used in photdstit electron trans-
port. Fig. 6.3 shows théps;; distribution of a leaf with a grease covered area.
The grease prevents gas exchange, resulting in a sub#jalutieer ¢5;; as a
consequence of low C{partial pressure. The G(partial pressur€’; inside the
leaf and® ps;; are functionally related (Fig. 6.2). Morison et al. 2005peed a
simple hyperbolic model

By = (6.2)
where®,,,, and K,,, are parameters. Common linear regression can be used on
suitably transformed variate§( — C; ' and®pg;; — ®py,;) to fit this model

to measurements of averages;; for givenC;s. However, the residuals are un-
acceptable, because of the remaining functional depeed@gng. 6.2, B). We
therefore propose an improved model based on a sigmoididunct

(I)maa:
s oxp (o)

Ppgrr = (6.2)
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Table 6.1: Quantum yieldd p5;; against CQ partial pressure

C; calibration parameters of proposed model and model of
Morison et al. 2005. Proposed model is significantly better
than the old model (F-Tesf? < 0.0001).

Model D K Cip o r?
(Pa) (Pa) (Pa)

Morison et al. 2005 1.16 164 — — 0.88

Proposed 0.624 — 6.59 288 0.998

where®,,,,, C;o ando are parameters. Eq. (6.2) describes a sample calibra-
tion curve significantly more accurate than the model preddsy Morison et al.
2005 (F-Test:P < 0.0001; Table. 6.1; Fig. 6.2, A and B). Moreover, the pro-
posed model is also able to extrapolate for sréalaccurately, as becomes clear
by comparing the model to the compensation point determinexigh gas ex-
change measurements (cross in Fig. 6.2, A). After a caldoraturve has been
obtained for the given environmental conditions, and ater model (6.2) has
been fitted (parameters shown in Table 6.1), it is simple fdyafhe inverse of
(6.2) to obtainC; distributions from® 5, fluorescence images (Fig. 6.3).

6.3 Lateral diffusion model

The transport equation of GOn leaves is given by three overlapping processes:
respiration, assimilation and diffusion (Galloét and Her2005). Leaf cells bind
CQO, through photosynthesis, and as all cells, respire and pp@©O. An ad-
ditional process designatgrhotorespirationis closely linked to photosynthesis
due to competitive binding of COand G by the RubisCO enzyme, which cat-
alyzes CQ fixation. However, the experiments presented here weremeed
under non-photorespiratory conditiori${ O,); photorespiration can thus be ne-
glected. The transport of G@an be approximately described by Fick’s empirical
law (Giovangigli 1999). The respiration ratg.;, can be assumed to be constant
and given, while assimilation is described by standardgdytthesis models (von
Caemmerer 2000)

o (Cz - F*) Amaa:
i+ K.(1+0/K,)’

kps(Cy) (6.3)

whereA,, .., K. and K, are the maximal rate and Michaelis-Menten constant of
carboxylation and oxygenation respectivélyandO are the chloroplastic partial
pressures of CQand oxygen respectively., is given by
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Figure 6.4: Lateral CQ diffusion model. A, model domaif of part of a leaf

of width ¢ and lengthL. An areal’, is covered by greasd.; is the boundary
around the domain, whil&y, is the boundary at the top and the bottom(bf

B, steady-state solution of GQliffusion model. Each curve corresponds to a
relative diffusion coefficienD’ = D /Dy, of: 0, 0.05, 0.1, 0.2, 0.3, 0.4 and0.5.
Dy, is the CQ free air diffusion coefficient.

050
S
wheresS, , is the relative specificity of RubisCO to G@nd oxygen (von Caem-
merer 2000).

I, (6.4)

Let 2 be a model domain describing part of the leaf with an areareoweith
grease (Fig. 6.4, A). Leff, be the boundary surrounding the domain, whilg
denotes the top and bottom boundary¥ofThe boundary describing the greased
area is denoted by, C I'y,. The steady state concentration distribution is then
given by the transport problem

—D AC; + Kkps — Kpesp = 0 inQ
VC;-n = 0 onI', , (6.5)
D VCZ ‘n = jin on Ftb

whereD is the CQ homogenized diffusion coefficient in the leaf, ajglcan be
approximated by (von Caemmerer and Farquhar 1981)

iinlCit) = xrn, o) (0.(Co= €)= 5 (G C)) acn, (69

wherexr,,\r, is the indicator functiort of I';;,\T'y, C, is the CQ partial pressure

1The indicator functiony 4 of a setA is given byy 4 (x) = 1 for x € A, zero elsewhere.
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outside the leaf and’ is the water transpiration rate. Integrating over the leaf
thickness and using the boundary conditions imposed [Edp)](G one dimen-
sional problem is obtained

d2¢; Ci—Tv) Amae iin
—-D da? + C%-(+Kc (1)+O/KO) = Kresp + JT s O<xz<LeR (6 7)
d,C; = 0 ,ze{0,L} cR ’ '

where( and L are thickness and length ©f respectively (compare Fig. 6.4, A).
This is the sought for problem to model the £€ncentration distribution. The
diffusion coefficientD in leaves depends on the porosity of the inner structure
(Fig. 6.1). Some plant species, suchvasabahave a high porosity, other such
as CAM plants, have low porosity) is thus expected to be betweemand Dy,
whereD,, is the CQ diffusion coefficient in free air§;, = 1.51 - 107° m? s+,

at 20° C' under standard atmospheric pressure, Nobel 1999). In tiieekehe
relative diffusion coefficienD’ = D /D¢, will be stated instead.

Eq. (6.7) can be solved using a
standardliscrete differencapproximation

Parameter Value

479 pm _
i 195 l;pa g1 (Stoer and Burlisch 2000b). The result-
- (33'8 6 pmol m=2 571) ing system of equations is not linear due
K 40 4 ].Da to the assimilation rate (6.3), and was thus

K 24.8-10° Pa solved usingNewton’s methodStoer and
’ : Burlisch 2000a). Fig. 6.4, B shows the so-

O 103 Pa (£1% O _
S 2837g< 0 ) lutions of Eq. (6.7) for the model parame-
,:/0 6.6 pa g1 ters shown in Table 6.2 and for varyihy:
s et 2s ) 0:0.05,0.1,02,03,0.4 and0.5. An ideal

3 96', 1%_3 P heterobaric leaf ha®’ = 0, while a ho-
" (; 163 mmol ;n—z s mobaric leaf, such a4 faba hasD’ = 0.3
E 6.17 - 10—5m5—1 —05

=2.54 mmol m =2 s . .
C ég 28 P;nmo ms) Leaf internal CQ partial pressures are

measured through gas fluxes by applica-
Table 6.2: Lateral CQ diffusion tion of Eq. (6.6) on the net Cfand wgter
simulation parameters. fluxes (von Caemmerer 2000). This can

be used to determine one photosynthesis

parameter, by application of mass conser-
vation (6.3) at the boundary. Most of the parameters in @&&RubisCO specific
and hence very well determined. Therefore, the maximahakdion rateA,,, ..,
which substantially varies between species and envirotaheanditions, is the
best candidate. This is how,,,. shown in Table 6.2 was determined.
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Figure 6.5: Fit of relative diffusion coefficientD’ = D/Dy, to a mea-
surement of a homobari¥icia fabg leaf. A, quantum yieldbpg;; aver-
age profile. B, model result against measurement val?es-(0.44).

Two photosynthesis parameters could be determined, whamgarange CQ
gradient would be present (e.g. using double-gasket chanb&dditionally to
Apnaz, the respiration rate,..,, which is measured in dark-adapted leaves (no
photosynthesis), could be obtained. Until now it is not ciéa: ., changes be-
tween dark-adapted and light-exposed leaves (Atkin et 808l Loreto et al.
2001).

6.4 Diffusion coefficients from concentration profiles

After having established the diffusion model and its pari@nmse the homogenized
diffusion coefficientD can be obtained from measurements. These measurements
are calibrated as described in Section 6.2 using the moddl \{6th the param-
eters listed in Table 6.1. However, befat® can be fitted to the data, average

C; profiles need to be obtained. This is accomplished by avegabie quantum

yield data (Fig. 6.3) perpendicular to the grease boundasylting in far less
noisy data than in single profiles (compare Morison et al.520@ubsequently,

D' is fitted to the measurement through minimization of an duoctional. Due

to its good stability we chose to use the relative error askérael of the error
functional (Galloét and Herbin 2005)

N
Ci(ry) — ¢
Jerr = Z % ) (68)
a=1 v

where N is the amount of measurements,,, ¢{') is the a-th measurement and
C;(x,) isthe model value at positian,. Because only one parameter is estimated,
Brent’s minimization algorithm was used (implemente®iNU Scientific Library
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Table 6.3: Lateral CQ diffusion flux effect for different relative diffusion
coefficientsD’ = D/Dy,. Refer to Fig. 6.6 for a description of the areas
I and/I and the diffusion distance&xz; and Ax;;. K: net CG assim-
ilation flux. AT andAK represent the difference to the ideal heterobaric
leaf (D' = 0), while Ax; and Ax;; measure the diffusion distance into
areal and I respectively. Fluxes are given jnmol m=2s~! and and
distances inmm.

D/ K AK 1 17 AT A.’I)I A.CU[[
(I+11) (AIT)
0 299.4 0 2994 0 0 0 0

0.05  307.5 81 2970 105 —-24 05 217
0.1 3114 120 296.2 152 —=3.2 0.75 3.17
0.2 317.0 176 295.0 220 —-44 108 45
0.3 321.2  21.8 2941 271 =53 133 5.5
0.4 324.8 254 2934 314 —-6.0 15 642
0.5 328.0 28.6 2927 353 —6.7 1.67 7.17

(GSL) Stoer and Burlisch 2000a). Fig. 6.5 shows the results fodttaset pre-
sented in Fig. 6.3. Due to the saturationdgfs;; for high CGO, levels (Fig. 6.2),
high CQO; partial pressures are systematically underestimatedmBEasurements
were thus restrained to G@artial pressures lower or equal 10 Pa. The con-
centration in the greased regions tends to reach the comp@mpoint®, because
the size of the grease strif, is large enough. The compensation point and the
CGQO, distribution are described accurately by the model. Thieisiidn coefficient
was determined to bB’ = 0.44 (corresponding td = 6.7- 105 m? s~!), and is
substantially larger than the results of other measureteehniques (Pieruschka
et al. 2005a). This is probably a consequence of how Piekasehal. 2005a
conducted the experiments. They determifefiiom lateral diffusion fluxes over
distances ob mm to 8 mm, increasing the occurrence of densly packed tissue
and thus underestimating the local occurring

6.5 Lateral diffusion effect

The relevance of lateral diffusion in photosynthesis caedienated by solv-
ing Problem (6.7) for a set of different diffusion coefficisrand comparing the
average net assimilation to those of an ideal heterobaafql# = 0). The CQ
distribution around a grease boundary in a homobaric leatf,be classified into

2Compensation poirit: CO, concentration at which no net assimilation OCCUrS,H,€sp =
Rps.
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two areas designed and // (ungreased and greased; Fig. 6.6). These areas
characterize the differences in ¢@artial pressure between homobaric and ideal
heterobaric leaves. Using (6.7), the net{8change rateNC E R) can be de-
termined

AX| m&% 1 &u
A WT%& NCER = 3 / Jindx ,  (6.9)
I u Jo
whereg, is the length of the ungreased
region (Fig. 6.6). TheVCER is de-
ideal _ livered by gas exchange equipment and
;5| heterobaric homobaric is thus widely used by experimenters.
A short calculation based on Eq. (6.9)
and Problem (6.7) shows
[l S
NCER= > K, (6.10)
? €u Ay — u
3 i
Coordinate P> where( is the leaf thickness anff is

_ the net CQ assimilation flux
Figure 6.6: Lateral CQ diffusion effect.

Areal andI [ determine the effect on the un- .

greased and greased sides respectivily;

and Az;; give the diffusion distances into K= /O (Kps = Firesp) dz, (6.11)
areas/ and I respectively (distance be-

tween grease boundary and where the differ- )

ence inC; is 5% of the heterobaric value). where = &, + ¢, Is the Iength of the

¢, and &, are the lengths of the ungreasedfngreased and greased regions. The
and greased regions respectively, while- difference inK between an ideal het-

ut g erobaric and a homobaric leaf renders
the effect of lateral diffusion on pho-
tosynthesis

13
AK = /0 (kps(C) — ps(CM)) dx .

where C; and C!" are the CQ partial pressure distributions of homobaric and
ideal heterobaric leaves, respectively. The usa Afinstead ofANC E R allows
to estimate the strength of the effect for other leaf dimamsi{ and¢,).

In addition to K, the diffusion effect can be estimated through the diffasio
distancesAx; and Az;;, which characterize the range of the effect into the un-
greased and greased regions respectively (Fig. 6.6). Tétsnde is defined as
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the one between the grease boundary and where the diffare@€® partial pres-
sure is5% of the heterobaric value. The solution of the ideal hetetiobaaf is
constituted by two values©?* = const in ungreased region and compensation
pointI" = const in greased region. The transition between these v&usharp
(compare Fig. 6.4, B). However, in a homobaric leaf, theditaon is continuous.
Depending on distance to the leaf boundary and size of thresgrstrip, the com-
pensation point and the ideal value at the boundary may evelpenreached. By
choosing the simulation domain carefully (essentiallgéaenough), these cases
are discarded to allow a calculation of the diffusion distzs

Table 6.3 lists the model results féf, AK, Ax; andAz;;. As expected the
diffusion distances increase wifl'. K and hence\l K also increase and reflect
an overall largetNC E R in homobaric leaves (Fig. 6.7), although photosynthesis
parameters were kept constant (Table 6.2). The effectgitiekh/<’ can be fitted
by a simple function

AK =aVD + 13, (6.12)

where« and 3 are coefficients. For the set of simulation parameters irieTab
6.2, we found an excellent accordance of (6.12) with the moemults (¢« =
42.4 pmolm=2 st andB = 1.34 umolm=2s71; r? = 0.999996). Eq. (6.12)
together with the given parameters, allow to determine ffextestrength for a
given D’ through a simple calculation. Note however theand s depend on the
simulation parameters, Table 6.2, and should not be useddasurements con-
ducted in other environmental conditions.

These results can be interpreted as follows. Homobariekavay exploit
the CQ resources more efficiently than heterobaric, because oé refiective
utilization of CQ,. In particular, water use efficiency. These leaves may have a
advantage when exposed to sun flecks, because the lightezkfissue obtains
additional respiratory COfrom the shaded tissue (Pieruschka et al. 2005b). Such
sunflecks have been reported to substantially contributevépall plant carbon
gain in shaded environment (Pearcy et al. 1996; Pfitsch aactyP@989). The
model presented here is easily adapted to this situati@tead of having a coor-
dinate dependent, = j:,(C;, x), a coordinate dependent,,,, = A () Must
be introduced. The effects should, however, be similaredire presented.
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Figure 6.7: Net assimilation fluxAK against relative diffusion coef-
ficient D' = D/Dy,. A simple fit function is also shownAK =
42.39v/ D" — 1.34, 7% = 0.999996.
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Chapter 7

Concluding remarks and
perspectives

Change return success

Going and coming without error
Action brings good fortune
Sunset Sunrise

Syd Barrett 1967

Throughout this work, some applications of transport eiquatin plant bi-
ology were presented. The application focused mainly onstizecely treated
field of cell and tissue growth. On the cell scale, an init@@b@ach to modeling
subcellular growth patterns was proposed and demonstuiated a simple exam-
ple. On the tissue level, the interplay between cell anditiscale was demon-
strated through introduction of a control mechanism basegl/tohormones.
This shows, that organ growth models should not solely berdehed by cellular
properties, such as turgor, wall extensibility, etc., dabdy control mechanisms
that operate on an organismic/tissue level (e.g. auxirspair).

However, the mechanical effect of surrounding cells on gedivth stays un-
treated. This may become one of the major future challenbssoe modeling.
Until now, several approaches exist to model tissue mechgsee e.g. Niklas
1992). However, these do not focus on the mechanical plieperf growing
tissue or how growing cells interact mechanically. Theseleare restricted
to short time scales, in which tissues behave as elastiebodDn larger time
scales, tissues deform/flow due to growth. Moreover, cefisable to communi-
cate exchanging compounds, introducing coordination #edtang the mechan-
ical properties of their walls. An example of such a complateiiaction is the
gravitropic reaction of roots, and was thus treated in the Ipeesented work.

91
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Gradients in auxin are used by the organ to control extensidhe flanks and
result in curvature of the organ. This shows how closelyteelaare compound
transport, mechanical properties and growth.

In addition to growth, an application of transport equasiam leaf CQ ex-
change modeling was presented. The simple model preseerted tescribes
guantitatively the lateral diffusion of COn leaves. Nonetheless, many ques-
tions remain unanswered. For example, the transport gfidtO the leaf through
stomata is still unclear. The current model assumes thatiurs solely on a diffu-
sional basis, and does not take into account that leaveapaoked densly and
gas exchange between stomata is possible. To treat this seperly, a multi-
component flow of C@, O,, H-O, etc., should be coupled to leaf geometry and to
photosynthetic models. An accurate £@ansport model is not only essential for
plant physiology, but also for climatic research. It is tlofiselevance to improve
the current model.

The work presented here shows how challenging the quawngitaescription
of biological systems is. Descriptional biology has reatches bounds already
since a long time. Modern biologists need quantitative epghes to refine and
improve their models. A synthesis of mathematical, physind biological mod-
els has thus become essential and is becoming an estatdispezhch in biology.
Biological systems, from a molecular to an ecological lepelse everyday new
unanswered questions. An interdisciplinary approach nestyé only way to find
answers.
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