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Transport phenomena in plant-internal processes: growth and
carbon dioxide transport

Summary

Aim of the here presented work was the quantitative modelingof plant-internal processes.
Growth of cells and tissues was one of the central themes, although the lateral transport
of carbon dioxide (CO2) was also treated. These processes depend strongly on fluxes
of water, hormones and/or CO2. Thus, suitable transport equations were sought for to
describe these processes.

Using the Lockhart-Equations, which are well known in biology to describe the growth
of a whole cell, local formulations of energy and mass conservation were obtained. These
formulations can be used to determine local growth patternsin cells. This was shown
through a numerical example of a spherical cell. Finally, the conservation equations
found, were shown to be consistent with the empirical Lockhart-Equations.

Plant organs, such as roots and hypocotyls, have spatial andtemporal growth pat-
terns. For example, the spatial distributions of growth in primary roots is given by a
bell-shaped distribution along the organ axis. This particular one dimensional growth
pattern was modeled here through the transport of two hypothetical phytohormones and
using the Lockhart-Equations as the underlying growth equations. Because the hypothet-
ical hormones were chosen to have auxin and cytokinin (two ofthe most important plant
hormones) properties, the model stays in a plant physiological context.

Not only one dimensional growth patterns are found in roots and hypocotyls. These
tend to have organ curvature and torsion, as becomes clear particularly in tropisms (e.g.
gravitropism, hydrotropisms and phototropism). Althoughthese processes are known for
a long time in biology, no suitable measures to characterizethe production of curvature
and torsion have been defined. Using a curvature and torsion conservation equation, a
measure for their production was found here. These measureswere then exemplified in
a simple model of the root gravitropic reaction, and appliedin the characterization of
the gravitropic reaction ofArabidopsis thaliana(L.) Heynh. wild-type andpin3 mutant
roots. The gravitropic reaction is believed to be regulatedby the hormone auxin.pin3
mutants are deficient in the PIN3 protein, which is essentialin the transport of auxin in
the root tip. Through comparison of the reaction of wild-type andpin3 roots, it was shown
here that the gravitropic reaction is not solely regulated by auxin, so that other regulation
mechanisms need to exist.

Finally, transport equations were found, which describe the transport and assimilation
of CO2 in leaves. Using gas-exchange and chlorophyll fluorescencemeasurements, the
homogenized lateral diffusion coefficient of leaves was determined. Moreover, the strat-
egy behind the existence of lateral diffusion in leaves was discussed (plants differ in the
porosity of their leaves).

Throughout the work presented here, it became clear how fructiferous the application
of transport equations in biology is. The importance of a quantitative description in biol-
ogy became also clear. Everyday new questions arise in biology. An answer to these may
only be found using an interdisciplinary approach.



Transportphänomene in pflanzeninternen Prozessen:
Wachstum und Transport von Kohlendioxid

Zusammenfassung

Ziel dieser Arbeit war die quantitative Modellierung von pflanzeninternen Prozessen. Die
Modellierung des Wachstums von Zellen und Zellverbunden war eines der zentralen The-
men der Arbeit, aber auch die Modellierung des lateralen Transports von Kohlendioxid
(CO2) in Blättern wurde behandelt. Diese Prozesse werden in der Pflanze durch Wasser-,
Hormon- bzw. CO2-Transportflüsse geprägt, weshalb zur Modellierung passende Trans-
portgleichungen gesucht wurden.

Basierend auf den in der Biologie wohlbekannten empirischen Lockhart-Gleichun-
gen, die das Wachstum einer gesammten Zelle beschreiben, wurden Energie- und Masseer-
haltungsgleichungen gewonnen, mit denen lokale Wachstumsmuster in einer Zelle be-
stimmt werden können. Diese Gleichungen wurden dann exemplarisch für eine sphärische
Zelle nummerisch gelöst und die gefundenen Muster diskutiert. Anschließend wurde
gezeigt, dass diese Gleichungen tatsächlich eine konsistente Erweiterung der Lockhart-
Gleichungen darstellen.

Pflanzenorgane, wie Wurzeln und Hypokotyle, weisen räumliche und zeitliche Wachs-
tumsmuster auf. So ist z.B. die örtliche Verteilung von Wachstum in Wurzelspitzen von
einer glockenförmigen Verteilung entlang des Organs geprägt. Dieses eindimensionale
Wachstumsmuster wurde hier anhand des Transports von zwei hypothetischen Phyto-
hormonen und der Lockhart-Gleichungen beschrieben. Diesen hypothetischen Hormo-
nen wurden Auxin- und Cytokinin-ähnliche Eigenschaften gegeben (zwei der wichtigsten
Pflanzenhormone), womit das Modell einen pflanzenphysiologischen Bezug behält.

Wurzeln und Hypocotyle weisen nicht nur eindimensionale Wachstumsmuster auf,
sondern können Krümmungs- und Windungsprozesse aufweisen, wie im Falle von Tropis-
men (Gravi-, Hydro- und Phototropismus). Obwohl diese Prozesse schon lange in der
Biologie bekannt sind, gibt es keine zufriedenstellenden Maße zur Charakterisierung
ihrer Produktion. Anhand einer Krümmungs- und Windungserhaltungsgleichung wur-
den hier solche Maße bestimmt und exemplarisch an einem einfachen Modell der grav-
itropen Reaktion von Wurzelspitzen getestet. Daraufhin wurde dieses Maß verwendet,
um die Gravitropismus-Reaktion vonArabidopsis thaliana(L.) Heynh. Wurzeln (Wild-
typ undpin3 Mutanten) zu charakterisieren. Das gängige biologische Modell der grav-
itropen Reaktion von Wurzeln geht davon aus, dass diese vom Pflanzenhormon Auxin
reguliert wird. pin3 Mutanten produzieren das für den Auxintransport wichtige Protein
PIN3 nicht. Damit gelang es hier zu zeigen, dass die Reaktionnicht nur ausschließlich
von Auxin reguliert wird, sondern auch andere Regulationsmechanismen vorhanden sind.

Abschließend wurden Transportgleichungen zur Beschreibung des Transportes und
der Bindung von CO2 in Blättern aufgestellt. Anhand von Gaswechsel- und Chlorophyll-
fluoreszenzmessungen wurden dann der laterale homogenisierte Diffusionskoeffizient in
Blätter bestimmt und die Vorteile von lateraler Diffusion für das Blatt diskutiert.

Im Allgemeinen zeigt sich, wie fruchtbar die Anwendung von Transportgleichungen
in der Biologie ist. Vor allem wird aber klar, wie notwendig eine quantitative Beschrei-
bung in der Biologie geworden ist. Tagtäglich entstehen neue Fragestellungen, die einen
interdisziplinären Ansatz bedürfen.



Preface

All movement is accomplished in six stages,
And the seventh brings return
The seven is the number of the young light
It forms when darkness is increased by one

Syd Barrett, 1967

The purpose of this manuscript is to present the use of transport equations in
models of plant-internal processes and to point out possible future applications
of this concept. The manuscript is focused mostly on cell androot growth, al-
though an application in CO2 transport is also presented. Chapter 1 gives a short
introduction into transport equations and why these are important in plant biology.
Chapter 2 presents an application of a binary-mixture transport equation to model
cell growth and to obtain subcellular growth patterns. In Chapter 3 a model of
growing root tips, controlled by the transport of two phytohormones, is assem-
bled. Chapter 4 presents a new measure of curvature production in curving organs
and a simple model of the gravitropic reaction of roots. These findings are then ap-
plied in Chapter 5 to characterize the gravitropic reactionof Arabidopsis thaliana
(L.) Heynh. roots. This reaction is believed to be mediated by transport patterns
of the phytohormoneauxin, so that Chapter 5 can be understood as a sound basis
for future modeling of the gravitropic reaction using transport equations. Chapter
6 applies a simple CO2 transport equation to determine the effect of lateral dif-
fusion on heterogeneous photosynthetic assimilation patterns in leaves. And at
last, Chapter 7 presents some conclusions and perspectivesfound throughout this
manuscript.

The author wishes to thank Prof. Willi Jäger (Universität Heidelberg) and
Prof. Ulrich Schurr (Forschungszentrum Jülich and Universität Düsseldorf) for
making it possible to work on this manuscript. I also would like to thank heartily
all the members of theGrowth Groupof the ICG-III (Forschungszentrum Jülich).
I wish to thank in particular Kerstin Nagel and Roland Pieruschka for helping me
with their excellent experimental skills, and Maja Christ for being there when I
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Chapter 1

Introduction

Transport equations have an established position in engineering models, such as
in combustion problems, pollutant distribution, (chemical)-reactor modeling and
many more. However, biological systems have not been treated as thourough and
experience recently more attention. In plant biology, reaction-diffusion systems
are enjoying recent interest (e.g. Chavarría-Krauser and Schurr 2004; Roussel
and Roussel 2004; Chavarría-Krauser et al. 2005; Swarup et al. 2005; Galloët and
Herbin 2005; Prusinkiewicz and Rolland-Lagan 2006; and many more). In future,
transport equations will have even a more important role inPlant Physiologyand
Molecular Biology.

Biological systems, either cells or tissues, can be treatedas porous media
in which flow, reaction and diffusion occurs. Cell walls and membranes have a
complex structure full of either non-tightly packed microstructures or specialized
transport channels. Thousands of compounds travel in the symplast and apoplast1,
including signal relevant phytohormones. Hence, plant development and function
are determined essentially by these processes. Actually, many plant processes,
such as photosynthesis and growth, rely on specialized transport systems (xylem
and phloem transport, but also polar auxin transport). Already with the first mul-
ticellular plants transport systems had to be established.

The manuscript presented here aims at demonstrating application of transport
equations on plant growth and photosynthesis related gas transport. The set of
equations applied here can be generalized as species conservation equations (Gio-
vangigli 1999)

∂tρk + div (ρk v) + div Fk = mk ωk , k ∈ S (1.1)

whereρk is the mass density of the k-th species,v is the mass average flow veloc-
ity, Fk is the diffusion flux of the k-th species,mk is the molar mass of the k-th

1Apoplast: the medium outside a cell membrane, e.g. the wholecell wall structure of a tissue.
Symplast: the cell’s inside.

1



2 CHAPTER 1. INTRODUCTION

species,ωk is the molar production rate of the k-th species,S is the set of species.
Depending on the treated problem, several simplifications of (1.1) are used. For
example, Fick’s empirical law for the diffusion flux is a frequent approximation

Fk = −ρDapp
k ∇ Yk , k ∈ S , (1.2)

whereρ is the total density,Dapp
k is the apparent diffusion coefficient of the k-th

species,Yk is the k-th species mass fraction. However, the treatment ofsome cases
needs a more complex diffusion flux than (1.2), such as in polar auxin transport
(Chapter 3).

The chemical reaction termsmk ωk, wherek ∈ S, need also to be adapted
to the biological problem. Because not necessarily all species and reactions are
known or want to be modelled, the set of speciesS is reduced to a minimum.
Hence, production rates may become functions of the speciesconcentration, e.g.
in CO2 assimilation (Chapter 6). Eq. (1.1) will not always be used here in the strict
sense of species conservation. For example, in Chapter 4 a measure of curvature
production in curving organs is sought for, and based on a curvature conservation
equation.

Mathematical modeling of plant processes should always evolve hand in hand
with biological models. This implies the use of physiological parameters to allow
a clear and straightforward interpretation. Integration of mathematical and biolog-
ical models is challenging. The work presented here should be thus understood as
a basis for further developments.



Chapter 2

Cell Growth Model

2.1 Introduction

All plant tissues consist of cells. It is thus not astonishing that growth and devel-
opment of a tissue is given by growth and divisions of single cells. To understand
tissue growth, it is essential to have a clear picture of the cell structure. We will
see below, that the cell structure determines how cells grow.

Plant cells differ substantially from animal cells. Probably the most outstand-
ing differences are the presence of cell walls, vacuoles andplastides (Fig. 2.1
A). Cell walls supply rigidity and are composed mostly of cellulose microfibrills
interconnected by xyloglucan and arabinogalactan molecules (Lüttge and Kluge,
2002). This microstructure of the cell wall results in a complicated mechanical
behavior of cell walls (Cosgrove 1992; Niklas 1992). Vacuoles compose up to
90% of the volume of mature cells, and are mainly inorganic saltsin water. The
high osmolarity of the salts produces a high osmotic pressure inside vacuoles.
Here one of the largest differences between plant and animalcells becomes clear,
plant cells have a high internal pressure denominatedturgor (Fig. 2.1 B). The
turgor of cells assumes normally values between0.1 MPa and1 MPa.1 This
high pressure is possible due to the rigid cell wall surrounding the cell. Beside the
cell wall, the pressurized vacuoles are perhaps one of the most important agents in
cell expansion. There are several types of plastides in plant cells, the most charac-
teristic ones for plants are chloroplasts, which are responsible for photosynthesis.
Another type of plastides are the amyloplasts, found mainlyin non-photosynthetic
tissues, such as roots. These are used for starch storage andplay an important role
as sedimentation bodies in root gravitropism.

11 MPa is approximately10 bar.

3



4 CHAPTER 2. CELL GROWTH MODEL

Figure 2.1: A, Simplified scheme of a plant cell. B, Water influx and
turgor pressurep build-up in cell.

2.1.1 Cell proliferation and growth

Tissues develop through the coordinated interplay of two processes: cell expan-
sion and cell division (Beemster et al. 2003; del Pozo et al. 2005). However,
tissues do not have to be packed densly and may have intercellular spaces, which
may compose a substantial part of the tissue volume (e.g. leaves, refer to Chapter
6). Depending on the tissue, age and position, one or the other may dominate.
Division of plant cells is similar to the division of animal cells. However, in plant
cells the primary cell wall has to be synthesized between theduplicated nuclei
(Lüttge and Kluge 2002), so that a high polarity of cell division is found. Roots
show in particular a strong polarity in cell division, as most divisions occur in the
plane perpendicular to the root axis2 (Fig. 3.2 page 24). Cell division is coupled to
growth, else the dividing cells would constantly lose size.Young cells have small
vacuoles, so that cytoplasm composes most of their volume (Fig. 2.1 A). Thus,
growth due to cell proliferation is mainly due to cytoplasm production, in contrast
to cell expansion, which occurs mainly due to water and salt/nutrient uptake of
the vacuole (Fig. 2.1 B; Brumfield 1942).

2.1.2 Measure of growth

Several measures have been used to characterize growth in biology: absolute
change in length or area, rate of change of length or area and the relative growth

2Divisions parallel to the root axis are found in the apical meristem and are the basis of the
different cell lineages.



2.1. INTRODUCTION 5

rate (RGR). However, theRGR has been the most fructiferous in the characteri-
zation of leaf and root growth (e.g. Erickson and Sax 1956; Pritchard et al. 1993;
Schmundt et al. 1998; Walter et al. 2002), and is from a mathematical point of
view the most reasonable. Moreover, a thermodynamic approach to elucidation
of the cell wall expansion rate, has shown that theRGR is independent of cell
dimension (Section 2.2; Veytsman and Cosgrove 1998). TheRGR is defined as
follows

RGR =
1

J
∂tJ = ∂t ln J (2.1)

whereJ is a measure, e.g. cell length, area or volume. Roots and hypocotyls
grow almost unidirectional, therefore the cell length is used for characterization
of their growth, while leaves expand areally, so that the area is suited better. This
definition ofRGR allows a very simple average method, because theRGR is
given by a total derivative:

RGR =
1

T

∫ T

0

RGR dt =
1

T
ln

(

J(T )

J(0)

)

. (2.2)

Eq. (2.1) can be generalized into n-dimensions. Assuming that growth is a
flow generated by the vector fieldv(x, t) : R

n × R 7→ R
n, i.e. dtx = v(x, t), the

RGR can be related to the divergence of the vector field:

RGR = ∂t ln J = divv , (2.3)

This was probably shown more than150 years ago by either L. Euler or J. L. La-
grange and is equivalent to the equation of continuity for a measure-preserving
flow (Gerlich 1991).

In the biological literature a distinction between relative elemental growth rate
REGR and relative growth rateRGR is done. These differ in the dimension of
the vector field they work on,REGR is used in 1D whileRGR is used in 2D
and 3D. Throughout the work presented here we will not followthis convention
strictly, as the definition in Eq. (2.3) does not depend on thedimension and a
distinction seems unnecessary.

2.1.3 Wall extension and water uptake

In the last decade new insight into cell wall extension was gained (see e.g. Pritchard
1994; Cosgrove 2000). Several controlling factors have been found, e.g. the wall
proteinsexpansins, but the complete mechanism and control mechanisms of wall
extension are still unknown. It is up to date unclear how cells can extend tenfold
or more without their wall losing stability. The general accepted model of cell
wall expansion is that extension occurs through wall loosening and confirmed cell
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wall production – otherwise cell walls would become thinnerwith expansion. The
osmotic pressure in the cell produces a tension on the wall (Fig. 2.1 B). A creeping
condition is then achieved through cell wall yielding (Lockhart 1965; Cosgrove
1986; Cosgrove 2000).

Extension growth is composed of two overlaying processes: water uptake and
cell wall yielding. While turgorp is increased by water uptake, cell wall yielding
tends to decrease it. It becomes evident, that depending on the water influx and
cell wall yielding, a certainp is established in the cell (Fig. 2.1 B).

Lockhart (1965) proposed the following empirical equationfor the elongation
rate of cells

dtl = l φ (p− Y ) , (2.4)

wherel is the cell length,φ is the wall extensibility andY is the yield thresh-
old. Many measurements support Eq. (2.4), although some do not. See Cosgrove
(1992) for a discussion on this issue. The discrepancies maybe due to the vary-
ing interpretation of growth rate and to different measurement methods. Pritchard
et al. (1990) and Pritchard (1994) showed that growth of a root section fulfills Eq.
(2.4).

The cell can be described as a simple osmometer, water uptakeis then given
by

dtVol = −As Lp (ψs + p) , (2.5)

whereVol is the volume of the cell,As is the area of the cell surface,Lp is the con-
ductivity coefficient andψs is the osmotic potential (see Lockhart 1965; Cosgrove
1986; Cosgrove 1993; Nobel 1999).

For simple cell geometries, e.g. cylindrical, both Eqs. (2.4) and (2.5) can
be related. A cylindrical cell of base areaa0, perimetera1 and lengthl, has the
volume and surface area

Vol = a0 l (2.6)

As = 2 a0 + a1 l . (2.7)

From Eqs. (2.4) to (2.7), an expression for the “working” turgor is found

p =
Vol φ Y − As Lp ψs

Vol φ+ As Lp
. (2.8)

Lockhart (1965) and Cosgrove (1986) found similar expressions. If we solve Eq.
(2.5) for turgor pressure, insert it into Eq. (2.4) and use Eqs. (2.6) and (2.7), an
expression for the growth rate can be calculated
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dtl = −As Lp l φ (ψs + Y )

Vol φ+ As Lp
. (2.9)

Eq. (2.9) shows that the elongation of a cylindrical cell depends directly on
the osmotic potential and the yield threshold, but not on theturgor. As mentioned
before, the turgor assumes a certain value for given extensibility φ and water con-
ductivity Lp [Eq. (2.8)]. As in the case of the pressure in fluid dynamics, which
is a separation variable between the momentum and the mass conservation equa-
tions (Landau and Lifschitz 1991b), the turgor is the separation variable between
the “mass” conservation Eq. (2.5) and the “momentum” conservation Eq. (2.4).

Cells in a tissue are interconnected with a pectinuous layer, and can thus not
slide against each other. The wall of a mature cell is composed of three mayor
layers: primary, secondary and tertiary cell wall (Lüttge and Kluge 2002). Each
of these layers is composed by themself of countless thin layers of cellulose and
different incrustations. Throughout the extension process, new cellulose material
is deposited continuously on the inner side of the wall, so that the outmost layers
are simultaneously the oldest (Niklas 1992). The orientation of the microfibrills
determines the direction of growth. These change during expansion their orien-
tation angle, which becomes shallower relative to the cell axis during maturation
(Pritchard et al. 1993). Here again a strong polarity of cellgrowth is found. Al-
together, we conclude that Eqs. (2.8) and (2.9) can only be rough approximations
of cell growth.

2.2 Modeling cell growth

In Section 2.1 we saw that growth of a cell can be described by two equations, one
representing the mass conservation and the other the momentum or energy con-
servation [Eqs. (2.4) and (2.5)]. We would like to derive here local expressions of
these equations.

2.2.1 Mass conservation

The simplified cell model used in this section is given by a cell insideΩ(t) and
a cell wallΩw(t) that includes the plasma membrane (Fig. 2.2). In this section
we present the conservation equations and boundary conditions involved in water
uptake of cells. In Section 2.2.3 we will show that these equations simplify into
the well known osmometer equations proposed by Lockhart 1965.
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Species conservation

The conservation of non-reactive species is expressed by the set of equations
(Giovangigli 1999)

Figure 2.2: Simple cell model. Ω com-
poses the cell inside andΩw the cell wall.
The boundaries,Γ = Γw andΓout

w , and the
corresponding normal vectorsn = −nw are
shown.

∂tρk + div (ρk v) + div Fk = 0 (2.10)

wherek ∈ S, ρk is the mass density of
thek-th species,v is the mass average
flow velocity,Fk is the diffusion flux
of thek-th species andS is the set of
species. Instead of the mass density,
the species mass fractions

Yk =
ρk

ρ
, k ∈ S ,

can be used. These satisfy the relation
∑

k∈S Yk = 1, which follows from the
definition of the total density

ρ =
∑

k∈S

ρk .

The mole fractions are also used to describe the distribution of species

Xk =
m

mk
Yk , k ∈ S ,

wherem is the average molar weight of the mixture andmk is the molar weight
of thek-th species.

Summation of all species conservation equations (2.10) delivers, using the
mass constraint (Giovangigli 1999)

∑

k∈S

Fk = 0 , k ∈ S , (2.11)

the total densityρ conservation equation

∂tρ+ div (ρv) = 0 . (2.12)

The diffusion fluxFk of the k-th species, in absence of large temperature
gradients, is given by

Fk = −
∑

l∈S

Ckl dl , k ∈ S (2.13)
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whereCkl, k, l ∈ S are the multicomponent flux diffusion coefficients,dk is the
diffusion driving force of thek-th species

dk = ∇ (Xk) + (Xk − Yk) ∇ ln p , k ∈ S . (2.14)

Eq. (2.14) is valid only when external forces, if at all present, act equivalently on
all species. The diffusion flux can be used to define a species diffusion velocity

Vk =
Fk

ρk
, k ∈ S . (2.15)

These obey, similarly to theFks, a mass conservation constraint

ρV =
∑

k∈S

ρkVk =
∑

k∈S

Fk = 0 ,

which means that diffusion does not produce a mass average flow velocity.

Water uptake

The diffusion forces (2.13) can be simplified considerably by considering the
structure of the cell. Inside the cellΩ(t) the pressure gradient can be assumed
to be small, as it would produce a flow of a viscous fluid and would decrease in
strength promptly. This means that inΩ(t) local growth can be assumed to be
mostly driven by concentration gradients. Note that this isonly a rough approx-
imation. A cytoplasmic flowis present in cells. This flow is particularly evident
and strong in cells of theChara algae, in which a velocity of up to5 cmh−1 is
found. This flow occurs, however, in the cytoplasm and not in the vacuole and
can thus be neglected. In the cell wall/membraneΩw(t) the pressure gradients can
assume considerable values (pressure outside0.1MPa, inside0.5 to 1 MPa), so
that these two cases must be treated separately.

Cell inside

We approximate the solution in the vacuole as a binary mixture of waterW and
an osmotically active compoundC (i.e. S = {W,C}). The diffusion velocities
can be approximated by Fick’s empirical law (Giovangigli 1999)

Fk = ρk Vk = −ρDap
k ∇Yk , k ∈ S = {W,C} , (2.16)

whereDap
k denotes the apparent diffusion coefficient of thek-th species. The

diffusion coefficients are not independent, because the fluxes have to fulfill the
mass constraint (2.11). A simple calculation based onYW + YC = 1 shows that

D := Dap
W = Dap

C . (2.17)
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Only one conservation equation is needed to describe the problem inΩ(t), as the
mass fraction of e.g. the water can be determined throughYW = 1 − YC . The
effect of water inflow is then taken into account through suitable boundary condi-
tions applied to the compound’s problem.

Taking in mind that inside the cell no pressure gradient is present and that
pure diffusion does not produce an average mass flow velocity(v = V = 0),
the transport term in Eq. (2.10) is zero. Using the continuity equation (2.12) and
v = 0, a short calculation shows that the density does not depend on time, i.e. it
is only a function of the spatial coordinates. We assume herethat no initial gra-
dient in density was present, i.e.ρ = const. The species conservation simplifies
substantially

∂tYC −D ∆YC = 0 , in Ω(t) , (2.18)

whereD = const and Fick’s law (2.16) were used. We have to mention herethat,
although the problem assumed a simple form of a diffusion equation, it is posed
on the time dependent domainΩ(t). This difficulty can be by treated by introduc-
ing material coordinates.

We introduce the material velocityvb defined inΩ(t), and choose it so that it
corresponds onΓ(t) to the velocity of the boundary. Applying mass conservation
on the boundary, an expression for the boundary velocity is found

ρvb · n = −jinW · n , on Γ(t) ,

wherejinW is the water flux into the cell andn is the normal vector ofΩ(t) bound-
ary. To obtain an expression ofvb in Ω(t), we use

jinW · n = FW · n = −FC · n = ρD∇YC · n , on Γ(t) . (2.19)

and define the material velocity inΩ(t) as

vb := −D∇YC = YCVC . (2.20)

This allows to define a suitable material derivative

Dt◦ := ∂t ◦ +vb · ∇ ◦ . (2.21)

Using the diffusion equation (2.18), the boundary condition (2.19), the ma-
terial velocity (2.20) and the material derivative (2.21),the species conservation
problem obtains the following form

DtYC +D∇YC · ∇YC −D ∆YC = 0 , in Ω(t) ,

ρD∇YC · n− jinW · n = 0 , on Γ(t) .
(2.22)
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Growth

The rate of change in volume of a time dependent domainΩ(t) is determined
through the Reynolds-Transport formula (compare e.g. Quarteroni et al. 2000):
for any differentiable functionξ defined on a time dependent domainΩ(t) we find

dt

∫

Ω(t)

ξ dx =

∫

Ω(t)

∂tξ dx+

∫

Γ(t)

vb · n dγ , (2.23)

wherevb is the velocity of the boundary. Using Eq. (2.23) withξ ≡ 1 we find

dtVol = dt

∫

Ω(t)
dx =

∫

Γ(t)
vb · ndγ =

∫

Ω(t)
divvb dx =

∫

Ω(t)
RGR dx , (2.24)

where the general definition ofRGR (2.3) and Gauss’ Theorem were used. The
boundary velocity has to be continued intoΩ(t) by a meaningfully defined vector
field, i.e. one that is able to represent local growth and one that continuously
assumes the boundary velocity. Above such a continuation was found [Eq. (2.20)],
so that a local expression for growth is

RGR = −D∆YC , in Ω(t) . (2.25)

As we will show later in Section 2.2.3, Eq. (2.5) follows fromEq. (2.25) by aver-
aging over the cell volume.

Cell membrane

Problem (2.22) allows the determination of the compound distribution inΩ(t) and
Eq. (2.25) gives a measure of the local growth. However, the water fluxjinW is still
undetermined and depends on the sum of all concentrations ofosmotically active
substances inside and outside the cell, respectively. Inside the cell we assumed
that the pressure gradient is small. Nonetheless, in the cell wall/membrane the
pressure gradient is relevant for water transport. Insteadof using Fick’s law (2.16),
the water fluxFW in Ωw(t) can be approximated by an extended law (Chavarría-
Krauser and Jäger 2005)

FW = −ρD∇YW − ρK ∇p , (2.26)

whereD andK are the diffusion and barodiffusion tensors in the membrane. The
plasma membrane has a complex structure, composed of a phospholipid bilayer
resulting in an hydrophobic region sourrounded by two hydrophilic regions (Taiz
and Zeiger 1991). This prevents water diffusing easily directly through the mem-
brane layers. Although the transport coefficient of water through the membrane is
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small, it can be large enough to guarantee supply. The details behind membrane
water transport are still not known. Specialized protein pores namedaquaporins
have been determined recently, but their exact function is still unknown (Maurel
1997; Nobel 1999; Tyerman et al. 1999). Therefore, tensorial diffusion and baro-
diffusion coefficients may be needed. Here, we assume that water transport occurs
only normal to the boundaryΓw(t), i.e. D = D nw ⊗ nw andK = K nw ⊗ nw,
whereD ,K ∈ R andnw is the normal vector ofΓw(t). The species conservation
demands that the fluxes through the inner part ofΓw(t) andΓ(t) must be equal

jinW = FW = −ρD ∇YW − ρK ∇p , on Γw(t) . (2.27)

Due to the complex structure of the membrane, the determination of the pres-
sure and water concentration gradients is not trivial. However, these can be ap-
proximated by the difference in values between the inner andthe outer sides of
the membrane (Nobel 1999)

∇YW ≈ YW−Y out
W

h
nw =

Y out
C

−YC

h
nw ,

∇p ≈ p−pout

h
nw ,

on Γw(t) ,

whereh is the thickness of the membrane. Altogether renders the water flux
approximation

jinW ≈ −ρLp

(

p− pout − D

K
(YC − Y out

C )

)

nw , on Γw(t) (2.28)

whereLp = K /h is the water conductivity coefficient. It should be kept in
mind that the normal vectors ofΓ(t) andΓw(t) show in opposite directions, i.e.
nw = −n. We should also mention here thatΓw(t) was represented in a strongly
simplified manner. The osmotic active compounds are stored in the vacuole of the
cell, which is surrounded by a membrane separating it from the cytoplasm. The
cytoplasm itself is contained in a protecting membrane, theplasma membrane,
and the cell wall which spends rigidity to the whole complex (see Fig. 2.1).Γw(t)
contains all these layers, so thatD andK have to be understood as the average
transport coefficients over the entire composite.

Example

In this section we would like to present an example of a spherical cell suspended in
water. We assume that the pressure in the water is small compared to the turgor in
the cell (pout ≈ 0) and that no compound is dissolved in the water (Y out

c = 0). The
deformation of a pressurized hollow spherical body with a thin wall and vanishing
outside pressure is given by (Landau and Lifschitz 1991a)
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Figure 2.3: Modeled mass fractionYC during turgor recovery of a spherical cell
with loose cell wall(λ = 10−4 mMPa−1). Data visualized by cutting the sphere
at the equator and subsequently colorcoding the values. Below the colorcoded
images, the radial dependence is shown.
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Figure 2.4: SimulatedRGR during turgor recovery of a spherical cell withloose
cell wall (λ = 10−4 mMPa−1). Data visualized as in Fig. 2.3.
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Figure 2.5: Simulated mass fractionYC during turgor recovery of a spherical cell
with stiff cell wall (λ = 10−7 mMPa−1). Data visualized as in Fig. 2.3.
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Figure 2.6: SimulatesRGR during turgor recovery of a spherical cell withstiff
cell wall (λ = 10−7 mMPa−1). Data visualized as in Fig. 2.3.
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u = p
R2 (1 − σ)

2E h
= p λ , (2.29)

whereu is the radial deformation,R is the initial radius,σ is Poisson’s ratio,E is
Young’s modulus of the material andλ := R2 (1−σ)

2 E h
= const. Using (2.19), (2.20),

(2.28) and the time derivative of (2.29) we find an ODE describing the pressure

dtp = −Lp

λ
( p+ ψs) , for t > t0 ,

p = p0 , for t = t0 ,
(2.30)

whereψs = − D

K
YC is the osmotic potential. This equation allows together with

Problem (2.22) the determination of the concentration distribution YC and the
pressure. We introduce therefore spherical coordinates and assume thatYC is
only a function of the radiusYC = YC(r). We obtain the problem

DtYC +D (∂rYC)2 −D 1

r2 ∂r

(

r2 ∂rYC

)

= 0 , for 0 < r < R+ u(t) ,

∂rYC = 0 , for r = 0 ,

∂rYC − Lp

D
(p+ ψs) = 0 , for r = R+ u(t) .

(2.31)

Problems (2.30) and (2.31) do not suffice to describe the hereproposed prob-
lem, as the domain and hencer = r(t) depend on time. A geometric assumption
is needed to solve thisfree boundary problem. In the here presented case, we
included this assumption by using a spherical cell at all times. However, (2.31)
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Table 2.1: Simulation parameters for cell turgor recovery. Poisson’s
ratio σ and Young’s ModulusE vary considerably, the values ob-
tained for onion cells (Wei et al. 2001) and wood (Vogel 1995)were
taken to estimate the dimension ofλ.
Cell wall R σ E h λ Lp

(µm) (MPa) (µm) (mMPa−1) (ms−1MPa−1)

loose 100 0.2 to 0.3 3.5 to 8 ca.1 10−4 10−6

stiff 100 ca.0.3 ca.15 × 103 ca.1 10−7 10−6

Initial conditions ψ0
s (MPa) p0 (MPa) Ω0

−0.5 0.4 BR(0)

is still posed on a time dependent domain. A numerical solution can be obtained
by using Lagrangian coordinates (i.e.Dt → ∂t) and solving the resulting dif-
fusion equation. This implies, however, that special care has to be taken during
the numerical treatment of the problem. Using a finite difference approach on
a non-uniform discretization is reasonable due to the simple implementation and
the simplicity of the problem. To obtain the discretizationat a certain point in
time, the initial uniform discretization is deformed in time by assuming that the
deformation is produced by a flow of velocityvb

dtx = −Lp (p + ψs) , x ∈ Ω(t) and t > t0 ,

x = x0 , x0 ∈ Ω0 and t = t0 .
(2.32)

After exchanging the spatial derivatives by suitable discrete difference oper-
ators for non-uniform discretizations (Großmann and Roos,1994), Eqs. (2.30),
(2.31) and (2.32) can be solved using an explicit Euler-Scheme.

Two examples were simulated, one of a loose and the other of a stiff cell wall
(Figs. 2.3 to 2.7). The corresponding parameters are shown in Table 2.1. Mea-
surement of Young’s modulusE and Poisson’s ratioσ for cell walls is not trivial,
we therefore approximated roughly the coefficientλ. For the loose wall the values
found for onion cells were used (Wei et al., 2001), while the values of wood were
used for the stiff cell (Vogel 1995).

Both cells recover their turgor up to a certain value, which depends strongly
on the stiffness factorλ (Fig. 2.7). The cells differ in the rate of turgor recovery
and in the value reached after recovery. As expected, the stiff cell reaches much
sooner full turgescence than the loose cell. It grows thereby much less, clearly
shown in the higher turgescence and low dilution ofψs (Fig. 2.7). As a conse-
quence of growth and hence dilution, the loose cell reaches asubstantially lower
turgor (Fig. 2.7). It becomes here clear, that a cell with loose wall is in need of an
osmoregulation.3

3Osmoregulation: regulation of the cell’s, in particular the vacuole’s, osmotic potential. There
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The compound distribution and the growth distribution inside the cell brings
more insight into the differences between the stiff and loose cells (Figs. 2.3 to
2.6). The compound in the loose cell is slowly diluted from the boundary towards
the center, until almost a constant curvature of the radial distribution is found (Fig.
2.3). This is clearly reflected in theRGR distribution (Fig. 2.4), which moves al-
most as a wave from the boundary into the center and becomes slowly almost
constant along the radius (ca.7 %h−1 at t = 1.6 s). Nonetheless, the region
near the boundary starts slowly to grow less than the center (t = 2 s, Fig. 2.4),
and the cell diminishes overall growth. The stiff cell showsa different recovery
pattern (Fig. 2.5 and 2.6). As in the case of the loose cell, the compound is diluted
from the boundary towards center. However, the radial compound distribution
does not reach an almost constant curvature. An increase in concentration in the
region near the boundary, due to the fast pressure increase,is found instead (Fig.
2.5). TheRGR distribution shows this behavior more clearly. The growth moves
from the boundary towards the center, as for the loose cell. Due to the increas-
ing pressure (Fig 2.7), less water can enter the cell and growth near the boundary
loses strength. There is even a certain critical time, when negative growth near
the boundary is found (t > 0.12 s, Fig. 2.6). This is explained by the strongly
reduced water influx, resulting in the boundary tending to lose water in favor of
more central regions. The negative and positive growth approach zero, when the
cell stops to grow.

2.2.2 Energy conservation

Energy conservation states that the rate of change of internal energy of a bodyΩw

is given by the sum of the work done by or on the body per unit time and of the
rate of heat exchange (Landau and Lifschitz 1987). This can be generalized for
continua by using the energy density

dtE = dtR + dtQ , (2.33)

whereR is the work density andQ is the heat density. The energyE of the
complete body is obtained through integration of the density over the domainΩw

E =

∫

Ωw

E dx .

Eq. (2.33) can be used to determine the rate of cell wall expansion (Veytsman
and Cosgrove 1998). This is achieved by assuming that cell wall expansion is
due to creeping of the wall. Creeping occurs when the stability condition for the
volume dependence of the pressure is not fulfilled, i.e. when∂p

∂V
≥ 0 (Landau

are several choices of how this can be achieved, e.g. ion fluxes, osmotic activation of a compound
by chemical reaction, etc. (see Kauss 1978 for algae).
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and Lifschitz 1987; Veytsman and Cosgrove 1998). If the inner energy of the cell
wall is assumed to be constant during creep, the rate of expansion is determined
solely by the work ratedtR and the viscous dissipation of energydtQ. Expan-
sion changes the inner structure of the cell wall, e.g. the angle of the microfibrills
changes in relation the the cell axis (see Section 2.1). A change of inner structure
is accompanied by a change of inner energy, which is counteracted by deposition
of new cell wall material. The above assumption of a constantinner energy, is
therefore only a rough approximation to cell wall expansion.

Deformation work

The work per unit time achieved by a deformation of a bodyΩw is given by (Lan-
dau and Lifschitz 1991a)

∫

Ωw

dtR dx =

∫

Ωw

div σ · dtu dx ,

whereσ is the stress tensor4 andu is the displacement. Asdiv σ is the force
acting on a differential volume anddtu is the displacement per unit time, this
equation is the continua version of the simple lawwork = force×displacement.
The integrand on the left side can be transformed into a totaldivergence and a
correction term

div σ · dtu = div (σ u) − σ : ∇dtu ,

whereA : B =
∑

i,j Aij Bij and(∇a)ij = ∂iaj. Because the stress tensorσ is
symmetric,∇dtu can be symmetrized to obtain the time derivative of the strain
tensordt∇u = dtε.5 We find altogether for the work per unit time

∫

Ωw

dtR dx =

∫

Γw∪Γout
w

P · dtu dγ −
∫

Ωw

σ : dtε dx . (2.34)

whereP = σn is the force per unit area acting onΓw. The first term on the right
of Eq. (2.34) represents the work achieved by the external forces, while the sec-
ond term represents the work done by the stresses insideΩw.

Energy dissipation

Cell wall expansion is connected to energy dissipation due to the viscosity of the
cell wall and to the finiteness of the expansion velocity. Forsmall expansion

4Because the stress tensor is designed here byσ and Poisson’s ratio byσ, no danger of mis-
taking them arises. Moreover,σ does not appear in this Section.

5The displacement and the strain tensor are defined in relation to the originalΩw, so that the
time and spatial derivatives commute.
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velocities, the energy dissipation due to internal friction can be approximated by a
dissipation function(Landau and Lifschitz 1991a), which is a quadratic function
of the rate of deformationdtε. The dissipated energy is

∫

Ωw

Rdis dx =

∫

Ωw

dtε : η : dtε dx , (2.35)

where the fourth order tensorη is the viscosity tensor, which fulfills the symmetry
conditions

(η)iklm = (η)lmik = (η)kilm = (η)ikml .

If no other processes are involved in heat production, the rate of change of heat
and the rate of dissipation are equaldtQ = −dtRdis.

Non-Equilibrium

In non-equilibrium under the assumption thatdtE = 0, the dissipated energy
equals the work:dtR = dtRdis. Using Eqs. (2.34) and (2.35) we obtain

∫

Ωw

(η : dtε + σ) : dtε dx =

∫

Γw∪Γout
w

P · dtu dγ .

The term on the right hand side represents the work achieved by the surrounding
medium. For a pressurized cavity and a vanishing outside pressure, the surface
forces areP = −pnw, wherep 6= 0 for the inside andp = 0 for the outside
and nw is the normal ofΓw. This term obtains then the usual form found in
thermodynamics for an expanding gas:−p dtVol (Landau and Lifschitz 1987).
The integral over the inner boundary can be converted into anintegral over the
inner medium

∫

Γw

P · dtu dγ = −
∫

Γw

pnw · dtu dγ =

∫

Γ

pn · vb dγ =

∫

Ω

div (pvb) dx ,

wherenw = −n anddtu · n = vb · n on Γ [compare (2.20)] were used. If the
pressure is assumed to be constant, the energy balance obtains the following form

∫

Ωw

(η : dtε + σ) : dtε dx = p

∫

Ω

RGR dx+

∫

Γout
w

P · dtu dγ , (2.36)

whereRGR = div vb was used [Eq. (2.3)]. Eq. (2.36) has to be understood as
a method to determine the pressure inΩ. However, it becomes again clear that
a constant pressure is only a rough approximation. In reality, local variations in
pressure are expected due to the not necessarily constantη andσ. The second
term on the right of (2.36) models external forces. These forces may arise from
friction with the outer medium or from growing neighbor cells. It represents thus
a connection to biomechanical modeling of the tissue. However, these forces have
to be determined, which is not straightforward for growing tissues.
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2.2.3 Simplifications

The aim of this section is to show that the Lockhart Eq. (2.4) and the osmometer
Eq. (2.5) follow from Eqs. (2.25) and (2.36) by using simple geometric simplifi-
cations.

Water uptake

The average relative growth rateRGR of a cell can be obtained using Eq. (2.25)
and applying Gauss’ Theorem

RGR =
1

Vol

∫

Ω

RGR dx = − 1

Vol

∫

Γ

D∇YC · n dγ

Using the boundary conditions of Problem (2.22) and the approximation of the
water influx (2.28), we find

RGR = −As

Vol
Lp

(

p− pout + ψs − ψout
s

)

, (2.37)

whereAs is the measure ofΓ, i.e. the surface area ofΩ, andψs = − D

K
YC was

used. In the intercellular spaces,ψout
s andpout can be assumed to be small. Using

dtVol = VolRGR shows finally that Eq. (2.37) is equivalent to the osmometer Eq.
(2.5).

Elongation rate

If we assume a cylindrical geometry and a deformation along the cylinder (x3-
axis), the strain velocity tensor reduces into a scalar(dtε)33 = dt ln l, wherel is
the length of the cylinder. Only one component of the viscosity and stress tensors
appear in the equation:(η)3333 and (σ)33. Assuming that no forces act on the
external boundaryΓout

w , Eq. (2.36) reduces into

RGR = φ (p− Y ) , (2.38)

whereφ = 1
(η)3333

Vol

µ(Ωw)
, Y = µ(Ωw)

Vol
(σ)33 andµ(Ωw) is the measure ofΩw. Eq.

(2.38) is nothing else than the Lockhart-Equation (2.4) (Lockhart 1965). For a
cylindrical body with circular base of diameterD and wall thicknessh, we find
µ(Ωw) ≈ π D h l andVol = π

4
D2 l, so thatVol/µ(Ωw) ≈ D

4 h
. Eq. (2.38) obtains

then the form found by Veytsman and Cosgrove 1998.



Chapter 3

Root Growth Model

3.1 Introduction

Plants acquire essential nutrients and water through theirroots. It is thus not
astonishing that root growth serves as an instrument to overcome depletion of nu-
trients and/or water (Scheible et al. 1997). Root growth is therefore of particular
interest for plant physiologists. Mechanisms essential for plants, such asexten-
sion growth, and tropisms such asgravitropism, hydrotropismandphototropism1,
rely on both hormonal signaling and cell expansion (Cosgrove 1992; Perbal and
Driss-Ecole 2003; Eapen et al. 2005). It is also well known that phytohormones
control growth of plant organs by balancing cell proliferation and differentiation
(Beemster et al. 2003; del Pozo et al. 2005). Thus, finding a connection be-
tween hormonal models (fountain-model; Chapter 5; Evans et al. 1986; Muday
2001; Perbal and Driss-Ecole 2003) and biophysical growth models (Lockhart-
Equation; Chapter 2; Lockhart 1965; Cosgrove 1986; Passioura and Fry 1992) is
a critical first step for an accurate model of root growth.

Two different characterizations of root growth are found: system expansion
through branching and individual root elongation. Leadingto two different classes
of models, those describing the topology of root system (e.g. Pages et al. 1989;
Fitter et al. 1991; Buckner et al. 1996; Berntson 1997), and those which focus on
the distribution of growth properties of single roots, including velocity, rate and
cell length (Goodwin and Stepka 1945; Erickson and Sax 1956;Beemster and
Baskin 1998; Silk 1992; Pritchard et al. 1993; Evans et al. 2001; Walter et al.
2002).

The distribution of growth in primary roots has been traditionally measured

1gravitropism: tendency of a plant organ to grow either towards (positive)or away from (neg-
ative) the gravity vector. Roots are positively gravitropic while hypocotyls are negatively gravit-
ropic. hydrotropism: tendency for a roots to follow gradients of humidity in the soil. phototropism:
tendency to grow towards or away from light sources.

23
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Figure 3.1: Relative elemental growth rate,REGR, and velocity distributions
along typical root tips of A,Arabidopsis thaliana(L.) Heynh. and B,Nicotiana
tabacum(L.) (Data courtesy of Kerstin Nagel, Forschungszentrum Jülich). The
quiescent center, a region of mitotically inactive cells located apically of the meris-
tem, was chosen as the frame of reference.

BA

Figure 3.2: A, Schematic representation of a primary root tip with it’s different
tissues and zones (Modified from Russell, 1977). B, Microscopic picture of an
Arabidopsis thaliana(L.) Heynh. root (Modified from Ishikawa and Evans 1997).
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using charcoal marks on the root surface (Erickson and Sax, 1956). The position
of the marks are determined in time and theREGR is calculated through one of
the Eqs. (2.1) or (2.2). This method allows only a poor spatial and temporal res-
olution. To obtain aREGR distribution, interpolating schemes on the positions
have to be used leaving a wide range of error in the resulting distribution (Peters
and Bernstein 1997). New techniques with high temporal and spatial resolution
have recently become available to quantify growth fields (Schmundt et al. 1998;
Walter et al. 2002; van der Weele et al. 2003). These techniques are based on im-
age sequences produced by CCD or CMOS cameras. Through the determination
of the movement of gray-value structures, the velocity vector fieldv(x, t) and the
REGR are approximated.

Root tips, independent of the species, show a typical bell shapedREGR pro-
file (Fig. 3.1 forA. thalianaandNicotiana tabacum(L.) root tips). The increase in
REGR along the root tip has traditionally been thought to be continuous (Morris
and Silk 1992; Sacks et al. 1997). However, the new techniques of high spatial
resolution show a more or less constantREGR in the meristem and a sudden
transition into the elongation zone (Fig. 3.1; van der Weeleet al. 2003), which
is supported by cell length measurements (Ivanov and Maximov 1999). This sug-
gests the existence of a critical condition to attain the transition into elongation
and a correlation between cell size and division rate in the meristem (Ivanov and
Maximov 1999). As we will show later, this allows to obtain a connection be-
tween the division rate and the averageREGR in the meristem (Section 3.2.5).

Until now the approach to modelREGR distributions along root tips (Fig.
3.1) has been based on conservation and kinetic equations, such as those used by
Silk (1992). Empirical approaches, e.g. the use of a logistic fit, have also been
used (Morris and Silk 1992). However, these approaches do not focus on model-
ing the control of the elongation zone, but rather on characterizing cell production
and expansion rates under different environmental conditions: temperature, wa-
ter stress, nutrient availability, etc. Moreover, mechanistic understanding of root
growth needs to take into account the architecture of the root growth zone. The
root tip is comprised of the apical and basal meristem, the elongation-only zone
and the mature root (Fig. 3.2; Beemster et al. 2003). Most cell divisions occur
in the apical meristem, although some are also found in the basal meristem. The
elongation-only zone is characterized by cell elongating,most probably through
water uptake of the vacuole (Brumfield 1942), and almost no dividing cell. In the
mature part of the root cells do not divide or grow to produce elongation.2

This work presents a novel approach to model these distributions. The meris-
tem and elongation-only zone of a root (Fig. 3.2) is described by a one dimen-
sional string of cells. A cell is the smallest entity taken into account, i.e. the

2Cell division occurs in the mature root part mainly for secondary growth and root branching.
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internal cell structure (cytoplasm, vacuole, plastides, etc.; compare Fig. 2.1 on
page 4) will not be taken into account. Cell properties, suchasREGR and phy-
tohormonal concentrations will be assumed to be homogeneous inside a cell. The
position of the cells is described by one spatial variablex ∈ R

+
0 , which measures

the arc length between the cells and the quiescent center.3 The numberN(t) ∈ N

of cells in the string changes in timet due to cell division. Cell death in this re-
gion is negligible resulting in a mortality rate of zero, while the division rate, i.e.
the number of divisions a cell goes through within one hour, is positive or zero.
The division process is assumed to be symmetric, i.e. the twocells produced by
division are indistinguishable. This means that both daughter cells have the same
length and undergo the same processes. Furthermore, we assume that the length
of the tissue is not affected by cell division. Not only division affects cell length,
but also growth, so that each cell has a time-dependent length denoted here by
lk(t), wherek = 1, . . . , N(t).

In analogy to the known architecture of the root growth zone (Beemster et al.
2003), we assume that cell division occurs at the end of the string of cells rep-
resenting the root tip (division zone), followed by a segment of cells undergoing
elongation (elongation-only zone), resulting in a saturation zone and finally a zone
of mature cells. We assume that the transition between thesephases is determined
by a ratio functionω = ω (c1(x), c2(x)) ∈ C0(R × R,R), which depends on the
concentrationsc1(x) andc2(x) of two hypothetical hormones. These hormones
were chosen to have auxin- and cytokinin-like properties. These hypothetical hor-
mones are assumed to be produced as cytokinin and auxin in theroot tip and in the
plant shoot, respectively (Taiz and Zeiger 1991). Moreover, these are assumed to
be subjected to degradation, dilution and cell-to-cell transport, either of diffusive
or active nature. Throughout this Chapter, Latin indices will assume values from
1 toN(t), while Greek indices assume the values1 and2. Timet will be given in
hours and minutes (h andmin), position inmm, cell lengths inµm and concen-
trations inmmol m−3. The termsauxinandcytokininwill be used freely to design
the two hypothetical hormones. However, the reader should keep in mind that the
effect of auxin and cytokinin is too complex to be described completely, so that
the hypothetical hormones were chosen to resemble only someof the properties
of these two phytohormones.

3.2 Biophysical equations

We saw in Chapter 2 that cell growth can be described by two equations, corre-
sponding to mass and energy conservation. We saw also that the turgor functions
as a separation variable between these two equations [Eqs. (2.4) and (2.5)], so that

3Quiescent center: region of mitotically inactive cells at the root tip (Fig. 3.2).
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it assumes a certain value depending on the wall extensibility and on the concen-
tration of solutes inside the cell [Eq. (2.8)]. This allows to obtain an elongation
rate that is independent of the turgor [Eq. (2.9)].

The connection between growth rate, wall extensibilityφ and turgorp is essen-
tial to model correctly theREGR distribution. A cell length dependentREGR
would change during cell division. For example, a linear dependence,REGR ∝ l,
would result in halfREGR after a division. Such disturbances in the meristem’s
growth have not been reported (Ivanov and Maximov 1999), suggesting a cell
length independentREGR. Measurements of the velocity distribution along the
root show that the distribution in the elongation-only zonedepends linearly on the
coordinate (van der Weele et al. 2003), so that the slope, i.e. theREGR, does not
depend on cell length. Additionally, the Lockhart-Equation has been validated by
an approach describing cell wall creep (Veytsman and Cosgrove 1998). We there-
fore use here the simplified versions as the underlying cell growth equations [Eq.
(2.37) and (2.38); page 22].

3.2.1 Approximations

Lockhart 1965 suggests that water conductivityLp is not restricting for growth of
single cells. Although root cells compose a tissue and cannot be treated as single
cells, this view is supported by measurements of turgorp along the root axis. If
water conductivity would be restricting, Eq. (2.8) impliesthatp would approach
the yield thresholdY (i.e. limLp→0 p = Y ). However,p in root tips has been
found to be substantially higher thanY , showing thatLp is not a restricting factor
in root tips (Pritchard et al. 1990; Spollen and Sharp 1991; Pritchard et al. 1993).
In other tissues, e.g. leaves, water supply may be restricting (see e.g. Boyer 1968).

For non-restricting water conductivity, normal root cell geometry and normal
cell wall extensibilityφ, we find a small ratio of volume increase to water uptake
γ := Vol φ/As Lp.4 Under this condition Eq. (2.9) simplifies, up to second order
in γ, to

dtl = −l φ (ψs + Y ) + γ l φ (ψs + Y ) + O(γ2) , (3.1)

whereψs is the osmotic potential. Eq. (2.8) becomes

p = −ψs + γ (ψs + Y ) + O(γ2) . (3.2)

4The assumption of a smallγ is legitimate for all cells found in root tips: a young meristematic
cell hasγ ≈ 10−5, while a cell located at the growth maximum hasγ ≈ 10−4 and a mature cell
hasγ ≈ 0.
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The zero order approximation shows that theREGR is independent of the
surface to volume relation and independent of the water conductivity. Addition-
ally, the turgor tends to reach the osmotic potential insidethe cell in well-watered
conditions. The turgor has been found by other authors to be constant along and
across the expanding region (e.g. Pritchard et al. 1990; Spollen and Sharp 1991).
However, the first order approximation of the turgor, shows that this is rather
unlikely as the wall extensibility and the relation betweensurface and volume
change along the root axis. Additionally, the zero order approximation shows that
a pattern in the osmotic potential is propagated into the turgor distribution. The
osmotic potential is known to change along and across the root tip, else water up-
take and transport into the xylem would not be possible (Murphy 2000; Pritchard
et al. 2000). A careful inspection of the Figures published by Pritchard et al.
(1993) demonstrates that the turgor falls along the root axis.

3.2.2 Osmotic potentialψs

The osmotic potentialψs is crucial for the water uptake of a cell and thus also
for its growth (Eq. (3.1); Pritchard et al. 2000; Boyer and Silk 2003). However,
absorbed water tends to increasedψs, so that cells have to regulate their osmotic
potential to counteract dilution and to maintain growth. Root cells can increase
their volume several times (from ca.10 µm to more than100 µm length within
10 h; Beemster and Baskin 1998). Without regulationψs would soon reach−Y ,
i.e. p → Y , and growth would cease. For example, the simulation presented
in Chapter 2 showed that a cell with loose wall and no osmotic regulation tends
rather to diminish the osmotic potential than increasing its turgor (Fig. 2.7).

The gas equation can be used to model changes of the osmotic potentialψs =
RT ns/Vol (Landau and Lifschitz 1987; Génard et al. 2001)

dtψs = (RT/Vol) dtns − ψs dt lnVol + ψs dt lnT , (3.3)

whereR is the universal gas constant,T is the temperature,ns is the number of
moles of solutes. Assuming that the temperature is constant, the last term is zero.
Génard et al. 2001 proposes a simplified Michaelis-Menten equation to model the
accumulation process:dtns ≈ Z X Vol, whereZ is a maximum accumulation rate
andX is the proportion of solutes that are not consumed and remainsoluble. A
cell will not accumulate more solutes than needed to be turgescent and to maintain
mechanical stability. We propose a simple osmotic regulation based on the maxi-
mum accumulation rateZ = ζmax (ψs−ψs), whereζmax = const andψs = const.
Therein, the osmotic potential fulfills the following ordinary differential equation

dtψs = ζ (ψs − ψs) − REGRψs , (3.4)
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whereζ := RT X ζmax andREGR = dt lnVol. Eq. (3.4) can be interpreted as a
simple linear approximation of osmoregulation, whereζ determines the relaxation
time.

Water and solutes reach the root tip cells on two different pathways: sym-
plastic and apoplastic5 (Pritchard et al. 2000; Boyer and Silk 2003). Dilution
is intrinsic to apoplastic water uptake. However, solutes that reach the growing
cells through the symplastic pathway, i.e. supplied by the phloem, are not sub-
jected as strongly to dilution. As a consequence, only a fraction of the dilution
term in (3.4) acts on the osmotic potential. If the fraction of undiluted contri-
bution in each cell is known, the dilution term could be easily corrected. The
undiluted fraction may, however, depend on cell position (Pritchard et al., 2000).
It becomes obvious that Eq. (3.4) is a very simplistic and rough approximation
of osmoregulation. More complete water and solute uptake models exist (Murphy
2000; Murphy 2003; Boyer and Silk 2003), which would not bring here more in-
sight into the root growth model. We therefore restrict the model to the simplest
possible osmoregulation (3.4).

3.2.3 Wall extensibilityφ

Until now a direct measurement ofφ in vivo has not been published. The mean
extensibility of the active zone has been reported instead (Pritchard et al. 1990).
The Lockhart-Equation (2.4) delivers the distribution ofφ, for known distributions
of Y , p andREGR. If we assume that neitherY nor p change much along the
root, it becomes clear that the distribution ofφ is more or less proportional to the
REGR profile (Fig. 3.1).

In the last decade new insight into wall extensibility has occurred (see e.g.
Pritchard 1994; Cosgrove 2000). Several affecting factorshave been found, e.g.
the wall proteinsexpansins, but the complete mechanism and controls of wall
extension are still unknown. We propose an empirical approach based on an hy-
pothetical enzyme deposited on the cell wall. The concentration of the enzymece
influences essentially the wall extensibility

φ = φmax
ce

KM,e + ce
, (3.5)

whereφmax is a maximal extensibility andKM,e is a constant. As already men-
tioned,φ is determined by several factors, and will only be proportional toce for
small concentrations. For highces the enzyme is not restricting and other fac-
tors have a central role. The simplest model describing thisbehavior is the basic

5Apoplast are the rooms in cells and tissues that are outside the plasmalemma, while the
symplast define the inside of the plasmalemma.
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Figure 3.3: Schematic representation of the auxin and cytokinin transport
equations. Auxin is transported polarly from the shoot towards the root
apical cell, while cytokinin is solely transported by diffusion. The plant
shoot is represented here by suitable boundary conditions.Both hormones
are subjected to enzymatic degradation and growth dilution.

Michealis-Mentenkinetics used in (3.5).

We assume that the enzyme concentrationce on the wall satisfies

dtce = κe
prod − (κe

deg +REGR) ce, (3.6)

whereκe
prod andκe

deg are production and degradation rates. Dilution of the enzyme
due to cell wall expansion, is described by the term containingREGR.6

3.2.4 Phytohormone transport

Reaction-diffusion equations are a suitable instrument tomodel biological de-
velopment (Turing 1952; Prusinkiewicz and Rolland-Lagan 2006 and citations
therein), including signal diffusion and positioning mechanisms. Two different
approaches to model signal diffusion have been proposed: reaction-diffusion mod-
els and cell-to-cell transport models (Roussel and Roussel2004). These differ
essentially in the discretization involved in the resulting equations and are for

6Root cells grow almost unidirectional:dtl ≫ dtlw, dtlh. The dilution of the enzyme occurs
on the expanding cell walls of areaa1 l, so that the dilution rate isdt ln(a1 l) = dt lnVol =
REGR.
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small cell sizes equivalent (Hammer 1998; Roussel and Roussel 2004). While
reaction-diffusion models are continuous and have to be discretized for numer-
ical calculation, the cell-to-cell transport approach is intrinsically discrete. The
conditions needed for an equivalence of both approaches arenot satisfied in the
model presented here, because cell size is not small compared to the distance
scale over which concentration changes significantly. Thus, a cell-to-cell transport
mechanism is used to model the positions of the different growth zones (division,
elongation-only, saturation, and maturity).

The change in concentration of a phytohormone inside a cell can be repre-
sented by a sum of the following contributions

dtc = (∂tc)diff + (∂tc)trans + (∂tc)dil + (∂tc)prod + (∂tc)deg , (3.7)

which are given by:diff usion, transport, dilution, production anddegradation.
Expressions for each of these contributions and suitable boundary conditions will
be treated in the following. A schematic representation of the transport equations,
and each of the contributions, are shown in Fig. 3.3.

Diffusion

Assuming that the cell wall membrane complex of widthh has a diffusion coeffi-
cientDα for the hormoneα, the amount exchanged by means of diffusion between
cellsk andk + 1 is

a0D
app
α ∇+

d cα,k ,

wherea0 is the base area of the cuboid approximating the cell,Dapp
α = Dα lk/h is

an apparent diffusion coefficient and∇±
d ◦ := ±(◦k±1 − ◦k)/lk is the forward or

backward difference operator. Diffusion also occurs between cellsk andk−1, so
that the net rate of change in amountsα,k in cell k is

(∂tsα,k)diff = a0D
app
α (∇+

d cα,k − ∇−
d cα,k) = a0 lk D

app
α ∆d cα,k ,

where ∆d ◦ := ∇+
d ∇−

d ◦ = (◦k+1 − 2 ◦k +◦k−1)/l
2
k is the discrete Laplace

operator. The concentration and the amount of a solute are connected through
c = s/Vol, which implies

(∂tcα,k)diff = Dapp
α ∆d ck , (3.8)

whereVol,k = a0 lk was used and assumed to be constant in the differentiation, as
dilution is accounted by the term(∂tc)dil.

As expected, the diffusion contribution has the form of a discretized diffu-
sion term. However, two different discretization could be used. We used here the
cell lengthlk as a discretization width, although we could have equivalently used
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the thickness of the cell wallh. Both result in the same formal expression (3.8),
but with different apparent diffusion coefficients.Dapp

α contains the relation of
cell length to membrane thickness and depends hence on the coordinate, indepen-
dently of the discretization used.

Transport

Auxin is produced in the plant shoot and has to be transportedactively into the root
tip, in particular due to the continuous increase in distance between the tip and the
shoot. This hormone is special in the sense that it undergoesbasipetal polar trans-
port in the shoot and acropetal polar transport in the root (Taiz and Zeiger 1991;
Muday 2001). Active transport can, in contrast to diffusion, lead to accumulation
in the root cap (Muday 2001; Perbal and Driss-Ecole 2003). The polarity of auxin
transport makes it a very good candidate for positioning mechanisms (Blilou et al.
2005; Teale et al. 2005). It has been demonstrated to be transported through influx
and efflux facilitator proteins (AUX and PIN7; Muday and DeLong 2001; Parry
et al. 2001; Friml and Palme 2002). Further, its transportation velocity,4mmh−1

to 10 mmh−1, is several times higher than that of diffusion (Sitte et al.1998).
The transport of auxin in the root tip is complex, as it is not only apical around
the central cylinder, but also radial in the quiescent center and basipetal towards
the elongation zone in the cortex cells (Fig. 5.1; Evans et al. 1986; Muday 2001;
Perbal and Driss-Ecole 2003; Teale et al. 2005). However, the mean transport
direction is apical towards the quiescent center.

The function of membrane transport systems is still not wellunderstood. Elu-
cidation of the function is hampered by the different transport proteins in mem-
branes (Lüttge and Kluge 2002). However, a transport systemcan be approxi-
mated using theMichaelis-Mentenformalism (Taiz and Zeiger 1991; Nobel 1999).
Let the active transport system be acropetal, so that the amount of auxin,α = 2,
being transported from cellk + 1 into cellk is

a0 jmax
c2,k+1

KM,2 + c2,k+1
,

wherejmax is a maximal transport rate constant andKM,2 is the Michaelis-Menten
constant of the system. Cellk transports, however, auxin into cellk − 1

−a0 jmax
c2,k

KM,2 + c2,k
.

7AUX and PIN proteins are located on the plasma membrane (pm),and facilitate the cellular
influx and efflux of auxin, respectively. Their location on the pm is not fixed. For example,
PIN proteins cycle continuously between the pm and endosomal compartments through vesicle
trafficking (constitutive cycling; Royle and Murrell-Lagnado 2003; Swarup et al. 2005), and their
distribution on the pm can react dynamic to upon applicationof chemicals (PIN1 and PIN2) or
upon gravitropic stimulation of the organ (PIN3).
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The net rate of change in concentration is then given by

(∂tc2,k)trans = jmax ∇+
d

(

c2,k

KM,2 + c2,k

)

. (3.9)

The transport direction is chosen by the discrete gradient operator. Here we chose
∇+

d reflecting an acropetal transport direction. If∇−
d is used, the transport direc-

tion is basipetal. We should mention here that in a homogenization of (3.9), due
to the continuity of the homogenized concentration, the term approximates a term

with the logarithmic gradientjmax ∇+
d

(

c2,k

KM,2+c2,k

)

→ jmax · ∇ ln(KM,2 + c2,k)

for lk → 0. The transport direction in the homogenized version is taken then
through the vectorjmax into account.

The transport term (3.9) represents the combination of efflux and influx fa-
cilitators. The nature of auxin transport is complicated. It has been shown that
influx facilitators (AUX/LAX proteins) are as important in accumulation as efflux
facilitator (PIN proteins; Kramer 2004; Swarup et al. 2005). Auxin seems also to
promote its own transport out of cells (Paciorek et al. 2005), which complicates
the modeling of the membrane transport system severely. Until now no quantita-
tive mathematical model of this behavior is known to the author, although some
similar approaches have been used in the modeling of shoot development (com-
pare Prusinkiewicz and Rolland-Lagan 2006).

We assume that cytokinin is not actively transported at all,i.e. its transport
is completely diffusive. This may be an erroneous assumption, as cytokinin is
known to be transported by xylem and phloem. However, this assumption keeps
the model as simple as possible and avoids excessively constraining the mecha-
nism’s possibilities.

Dilution

Growth implies an uptake of water, resulting in a considerable dilution of solutes.
A Zea mays(L.) root tip can locally grow with a rate of ca.50 %h−1. Without
compensation, a compound’s concentration would fall to ca.60 % of its original
value within one hour. Restitution can either be achieved byproduction or by ac-
tive transport. We see here that dilution cannot be neglected, as other authors have
(compare Prusinkiewicz and Rolland-Lagan 2006). The contribution of dilution
is

(∂tcα,k)dil = −dt lnVol,k cα,k = −REGRk cα,k . (3.10)

Production and degradation

We assume that cytokinin is produced at the root tip by the apical cellk = 1
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(∂tc1,k)prod = κp
1 δk1 , (3.11)

whereκp
1 is a constant andδkj is the Kronecker-symbol, which is defined as:

δkj = 1 for k = j and0 for k 6= j. Most auxin is produced in the plant shoot (Taiz
and Zeiger 1991). We do not model the whole plant. It is therefore included into
the transport equations through a boundary condition, so that the production rate
vanishes:(∂tc2,k)prod = 0 for 0 < k < N . We will treat the boundary conditions
separately below.

The plant has to control the hormonal concentrations, for hormone regulation
to be possible. This happens through regulation of the production and through
suitable enzymatic degradation or conjugation. After a short time auxin trans-
port leads to an accumulation in the apical cell. It is known that the root tip has
the highest concentration of auxin in the root (Swarup et al.2001). To avoid
accumulation of huge amounts of auxin (high transport velocity: 4 mmh−1 to
10 mmh−1), the apical cell has to conjugate and/or degrade at a substantially
higher rate than other cells do. To take this into account, degradation/conjugation
of the hormones is described by

(∂tcα,k)deg = −(κd
α + κc

α δk1) cα,k , (3.12)

whereκd
α andκc

α are constants. Conjugation is strictly not the same as degra-
dation, as conjugated hormones may be de-conjugated for later use. The need
of a higher conjugation/degradation rate in the apical cell, may be an artifact of
the one dimensional model. Real roots seem to have an auxin recycling system
(Teale et al. 2005; Swarup et al. 2005). Auxin transported acropetally into the
apical meristem is redistributed radially towards the cortex cells and transported
basipetally towards the shoot. However, it seems that the basipetal transport ends
not far from the growth zone and PIN proteins may be involved in transport to-
wards the central cylinder, i.e. auxin is cycled. The cycling could be part of a
stabilization strategy.

Boundary conditions

Boundaries could be classified into:natural, given by the geometry of the root,
andartificial, created by treating only a subset of the whole system. The mod-
eling of natural boundaries is normally more or less straightforward: the conser-
vation equations are integrated into a thin layer around theboundary and letting
the layer thickness go to zero (Giovangigli 1999). In contrast, artificial boundaries
are extremely challenging because the missing informationhas to be meaningfully
provided without excessively disturbing the solution. Choosing conditions on ar-
tificial boundaries is a fundamental question, in particular because not always the
whole system can be modeled or simulated (see e.g. Quarteroni et al. 2000 for the
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case of vascular fluid dynamics).

We introduced an artificial boundary to avoid a treatment of the shoot. We
therefore have to give suitable boundary conditions. We propose the following

• No diffusion into the surroundings of the cell string (homogeneousNeu-
manncondition). Reduces to a condition fork = 1:

(∂tcα,1)diff = Dapp
α ∇+

d cα,1 , for k = 1 .

• Cytokinin fulfills thedo-nothingcondition8 on the artificial boundary (k =
N):

(∂tc1,N)diff = −Dapp
1 ∇−

d c1,N , for k = N .

• The missing plant shoot is represented by an auxin source, which produces
an influx through the artificial boundary. The concentrationcin2 in the source
changes with rate:

dtc
in
2 = κin

2 − jmax

l

cin2
KM,2 + cin2

,

whereκin
2 is a constant production rate andl is a mean cell length. This

boundary condition can be identified with aDirichlet condition forc2.

Transport equations

Combining all the contributions and boundary conditions, we obtain the following
transport equations

Cytokinin :

dtc1,k =







Dapp
1 ∇+

d c1,1 + (κp
1 − κd

1 − κc
1 −REGR1) c1,1 , k = 1

−Dapp
1 ∇−

d c1,N − (κd
1 +REGRN ) c1,N , k = N

Dapp
1 ∆d c1,k − (κd

1 +REGRk) c1,k , else

(3.13)

8The do-nothingcondition for a partial differential equation is found through theweakfor-
mulation of the equations. Here, the do-nothing condition becomes the same as a homogeneous
Neumann condition, which means that the concentration becomes constant.
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Auxin :

dtc2,k =











































Dapp
2 ∇+

d c2,1 − (κd
2 + κc

2 +REGR1) c2,1+

+jmax
c2,2

KM,2+c2,2
, k = 1

−Dapp
2 ∇−

d c2,N − (κd
2 +REGRN ) c2,N+

+jmax ∇+

d

(

c2,N

KM,2+c2,N

)

, k = N

Dapp
2 ∆d c2,k − (κd

2 +REGRk) c2,k+

+jmax ∇+

d

(

c2,k

KM,2+c2,k

)

, else

C2,N+1 = cin2

dtc
in
2 = κin

2 − jmax

l

cin
2

KM,2+cin
2

(3.14)

Refer to Fig. 3.3 for a schematic representation of the equations with their
boundary conditions.

3.2.5 Cell division

The different phases that a cell undergoes are closely related to its division rate.
We will denote here the division rate byθ. Beemster and Baskin (1998) analyzed
the growth and division rates ofArabidopsis thaliana(L.) Heynh. roots. Their
measurements show that the distribution of the division rate is almost constant up
to a certain distance from the quiescent center. From this distance on, the division
rate is reduced drastically until it reaches zero. This finding leads to a step function
to model the field of division rate. The division rate of cellk is then

θ(xk(t)) :=

{

θ0 for 0 ≤ xk(t) < xel

0 elsewhere
, (3.15)

wherexk(t) is the position of cellk at timet, θ0 is a positive constant andxel de-
scribes the position where the cell stops dividing.xel is however not necessarily
constant in time and the same for each cell. In Section (3.2.6), we will present
howxel is determined in each cell.

We assume that the division process is symmetric, i.e. the daughter cells have
half the mother’s length, while all other properties are passed without modifica-
tion. This implies that the concentrationcα of phytohormones or the concentration
of cell wall ce are not affected by division. Additionally, the division process does
not affect the overall tissue length, i.e. before and after adivision the tissue has
the same length.

We still have not cleared whyθ is so important to model theREGR distribu-
tion. The answer to this question is simple: cells which divide have to grow. This
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occurs in contrast to expansion growth (water uptake) by cytoplasm production.
Even so, a cell must double roughly its volume before it divides. High resolution
measurements of cell length suggest the existence of a critical length indispens-
able for division to occur (Ivanov and Maximov 1999). This issupported by
high spatial resolution growth measurements, which show a more or less constant
REGR in the meristem and a sudden transition into the elongation zone (Fig. 3.1;
van der Weele et al. 2003). The growth in the meristematic region is highly cor-
related to proliferation. The average of the relative growth rate over time in the
meristem can be easily estimated. Letτ := θ−1

0 denote the cell cycle time lapse.
The cell length averaged over time at a fixed position in the meristem should be
time independent, otherwise after a certain timeT ≫ τ , the size of meristematic
cells would approach either zero or infinity. This is particularly true for the apical
cells, which stay in the meristem at all times. Conservationof average length is
guaranteed when cells double their size in one cell cycle, i.e. l(t + τ) = 2 l(t).
This implies that cell length in the meristem isτ periodic. The average of a peri-
odic function is given by the average over one period. Hence,in the meristem the
average relative growth rate over time is given by

REGRMer =
1

T

∫ T

0

1

l
dtl dt =

1

τ

∫ τ

0

dt ln l dt =
1

τ
ln
l(τ)

l0
,

wherel0 = l(0) is the minimal andl(τ) is the maximal cell length. Thus, the
averageREGR in the meristem is:

REGRMer = θ0 ln 2 , (3.16)

i.e. the average over time is essentially given by the division rate. This is in accord
with the finding of Beemster et al. (2003) that in the apical meristem cells divide
and grow at similar rates.

An expression for the average cell length over time in the meristem is also
easily obtained. The length of meristematic cells, like theREGR, is a periodic
function; we obtain thus the time-averaged cell length

lMer =
1

τ

∫ τ

0

l dt =
θ0

REGRMer

∫ τ

0

dtl dt ,

and after integration and use ofl(t+ τ) = 2 l(t)

lMer = l0/ ln 2 . (3.17)

3.2.6 Assembling the model

Each cell in the string has its own growth rate, turgor, osmotic potential, wall
extensibility, etc. These can be described by vector functions with an increasing
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dimension. We assume thatY , Lp, a0, a1, α, ψs, φmax,KM,e, Pα, jmax,KM,2 and
κd

α are the same for all cells. The division process is modeled asdescribed above
in Section 3.2.5.

The transitions between division, elongation-only and maturity are controlled
by the ratio functionω(c1, c2). This function may be thought of a sensing mech-
anism inside the cell. Transition into elongation-only or into saturation is accom-
plished whenω reaches certain critical valuesωel or ωsat. Because the concentra-
tions of hormones depend on position and thus on cell indexk, the ratio function
ωk = ω(c1,k, c2,k) allows the cells to obtain information on their position. Coor-
dination of the growth zone becomes therefore possible.9 We selected here the
empirical ratio functionω = c1/c2, as it suffices to describe the action of auxin
(c2) on the growth distribution.

Changes in wall extensibilityφk reflect the transition into a new phase.ωk does
not act directly on the wall extensibility, as the transitions are mediated through
the production and degradation of the cell wall enzyme. It acts thus on the rates
of these processes

κe
p,k = κe

p,div θ(ωel − ωk) + κe
p,el θ(ωk − ωel) θ(ωsat − ωk) ,

κe
d,k = κe

d,sat θ(ωk − ωsat) ,
(3.18)

whereκe
p,div, κe

p,el andκe
d,sat are constants corresponding to production and degra-

dation rates in the division, elongation and saturation phases,θ(x) is the Heaviside
function10 andωel andωsat are constant thresholds.

Eq. (3.18) connects the phytohormone distributions to the growth equation
(3.1). Through this equation the plant is able to influence root tip growth by
increasing or decreasing the phytohormone concentrations:

κin
2 , κ

p
1 → ωk → κe

p,k, κ
e
d,k → φk → REGRk .

To obtain distributions of cell properties, as turgor,REGR, etc., the cell coor-
dinates are needed. We define these to be at the cell center, sothat the velocityvk

and coordinatexk of cell k are

xk = xk−1 + (lk + lk−1)/2 x1 = l1/2 ,

vk = vk−1 + (dtlk + dtlk−1)/2 v1 = dtl1/2 .

9The model assumes that all cells in the string, which represents the root tip, sense their
distance to the quiescent center resulting in coordinationof the growth zone. However, in a real
root only selected cells may be sensing the distance and determine through cell wall stiffening the
end of the growth zone (e.g. stiffening of the young vasculartissue). As long as the model is one
dimensional, these two do not differ.

10The Heaviside function is defined asθ(x) = 1 for x ≥ 0 andθ(x) = 0 else, and should not be
confused with the division rate of Section 3.2.5. This division rate can be defined asθ′(xk(t)) :=
θ(xk(t) − xel).
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Figure 3.4: Mean velocity andREGR distributions (averaged overt =
120 h to 300 h). Transition into elongation-only occurs at ca.1.5 mm
from the tip, while saturation begins at3 mm.

3.3 Simulation, results and discussion

In this section we would like to present simulations of a one dimensional root and
to discuss the results in the light of experimental results.First we will show the
distributions and cell characteristics predicted by the model. Then the behavior of
the model to an increase in auxin production is presented. The simulation is based
on Eqs. (3.1), (3.4), (3.6), (3.13) and (3.14). These ordinary differential equations
are solved numerically by anexplicit Euler schemeon an equally discretized time
mesh of width10−3 min. At each time stepφk, κe

p,k andκe
d,k were determined for

all cells using the distributions of phytohormones together with the ratio function
ω and Eqs. (3.5) and (3.18).

Simulation starts with two initial cells. These have the initial properties found
in Table 3.1, where also the simulation parameters can be found. The parameters
were chosen so that a typicalZea mays(L.) root is resembled. The cell width and
height were chosen as:lw = 10 µm andlh = 10 µm.

3.3.1 Growth distribution and cell properties

The predicted distributions of velocity andREGR along the root are shown in
Fig. 3.4. These were averaged overt = 120 h to 300 h, because of oscillations in
the distributions (compare Fig. 3.8). In contrast to the wide accepted notion of a
gradual increase ofREGR in the meristematic region (Erickson and Sax 1956),
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Table 3.1: Parameters chosen to resemble a typicalZea mays(L.) root. I) Ini-
tial conditions. II) Cellular parameters: division rateθ0 (h−1), yield threshold
Y (MPa), water conductivityLp (µmmin−1MPa−1), osmoregulation rate co-
efficient ζ (min−1) and set-point osmotic potentialψs (MPa), elongation and
saturation thresholds of auxin/cytokinin ratio (ωel and ωsat). III) Parameters
used in phytohormone production, artificial boundary condition and wall en-
zyme production. Units:[l] = µm, [ψs] = MPa and [ce], [c1], [c2], [c

in
2 ] =

mmolm−3min−1, [Pα] = µmmin−1, [∗] = mmolm−3min−1 , [†] = min−1,
[jmax] = mmolm−2min−1, [‡] = mmolm−3, [l] = µm and [φmax] =
min−1MPa−1.

I Initial conditions
l ψs ce c1 c2 cin2

10 −0.5 0.0408 0.1 0 10−4

II Cellular parameters
θ0 Y Lp ζ ψs ωel ωsat

1/12 0.2 60 −0.1 −0.5 0.2 6

III Hormonal parameters
Hormone Pα κp

α
∗ κd

α
† κc

α
† jmax KM,2

‡

Cytokinin,α = 1 20 0.2 45 × 10−4 — — —
Auxin, α = 2 20 — 10−4 4 100 2 × 10−2

Boundary κin
2

∗ l

10−2 100

Wall enzyme κe
p,div

∗ κe
p,el

∗ κe
d,sat

† φmax KM,e
‡



3.3. SIMULATION, RESULTS AND DISCUSSION 41

the model shows an abrupt transition between the division and the elongation-
only zones (Fig. 3.4). Recent measurements of van der Weele et al. 2003 and
Ivanov and Maximov 1999 confirm for several species a more or less constant
REGR in the meristem and an abrupt acceleration in the elongationzone (Fig.
3.1). The sharp increase in growth indicates a change in the mechanism of cell
expansion (Ivanov and Maximov 1999). The differences between these notions
of meristematic growth can be explained by the smoothing procedures needed in
the determination of theREGR profiles. Sigmoidal fits of the velocity profiles
have been used traditionally for the determination of theREGR distribution
(Morris and Silk 1992). A gradual growth increase is intrinsic to a sigmoidal
velocity profile, so that it is does not surprise that the fit ignores the sudden
change inREGR. Modern methods allow the determination ofREGR profiles
more accurately (Walter et al. 2002; van der Weele et al. 2003) and confirm this
behavior.

Cytokinin, produced in the apical cell, falls quickly alongthe root axis, while
auxin accumulates in the apical cell and is almost constant elsewhere (Fig. 3.5).
The different degradation rates allow a monotonic ratio function ω and thus an
adequate positioning mechanism (Fig. 3.5). Auxin accumulation occurs due to
the polar transport, and measurements of IAA11 concentration along root apices
of A. thalianaconfirm its existence (Swarup et al. 2001). Accumulation in the
columella is the basis of thefountain modelof auxin transport and consequently
of gravitropismmodels (see e.g. Chen et al. 1999; Blancaflor and Masson 2003;
Perbal and Driss-Ecole 2003). Auxin gradients, produced byan interplay between
polar transport and diffusion, are good candidates for positioning mechanisms
(Blilou et al. 2005; Teale et al. 2005).

The model does not take the sub-cellular distribution of auxin into account,
although the cell can be treated as being composed of three adjacent compart-
ments: cell wall, cytoplasm and vacuole (Kramer 2004). Treating the cell as an
homogeneous entity has mainly an effect on the calculation of the active hormone
concentrations, as the amount of active hormone is not distributed in the whole
cell volume. However, although the physiological effects of auxin are well doc-
umented (Taiz and Zeiger 1991), the complete mechanism behind auxin sensing
is still unclear. It does not make much sense to take a sub-cellular distribution
into account, while the relevant compartment is still unknown. Nonetheless, the
simplified model is enough to describe the concentration gradients qualitatively
(Swarup et al. 2001). A more extensive approximation of cellular and sub-cellular
auxin transport can be found in Kramer 2004.

Cell length along the root axis is subjected to strong variations. A snapshot
at t = 270 h and the averaged distribution (fromt = 120 h to 300 h) are shown

11IAA: Indole-3-acetic-acid, the most relevant auxin.
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in Fig. 3.6. Cell division is responsible for the oscillation in cell length distri-
bution. The transition into elongation only and into saturation depend only onω,
and hence only on the phytohormone concentrations. Thus, division and transi-
tion into elongation-only are not coordinated, resulting in varying terminal cell
lengths. Because cell division is perfectly synchronized in the model, the varia-
tions in cell length distribution are regular. However, a real root does not have
such a complete synchronization, explaining why irregularstrong variations of
cell length have been reported (see Fig. 8 in Pritchard et al.1990).

The turgorψp distribution is almost constant along the root (Fig. 3.6), with
a slight deviation in the elongation-only zone due to the higher wall extensibility
[Eq. (3.2)]. Pritchard et al. (1993) found the turgor to be constant, but a careful
inspection of their Figures shows that the turgor falls slightly. The cause of this
is not certain. Either the osmoregulation is not fast enoughto counteract dilution,
or the increasing wall extensibility causes the turgor to fall [compare Eq. (3.2)].
Water and solute supply is chimeric in the root tip: symplastic and apoplastic
(Pritchard et al. 2000; Boyer and Silk 2003). A substantial amount of the solutes
are not subjected to dilution, as they are supplied symplastically (phloem). A slow
osmoregulation is thus improbable. The model shows that dueto the higher wall
extensibility in the elongation-only zone, the turgor falls not more than0.05MPa
(Fig. 3.6). Pritchard et al. (1993) showed, however, that the turgor falls continu-
ously at the basal end of the elongation-only zone for more than0.1 MPa. The
cell extensibility can thus not be the cause. A heterogeneous deposition rate of
osmotically active compounds (Walter et al. 2003) may be responsible for an in-
creasing osmotic potential and consequently for a decreasing turgor. It becomes
clear that modeling the distribution of osmotically activecompounds is essential
for the description of the turgor distribution.

The elongation-only zone and consequently the growth of thewhole root is
characterized by the position of the transition into elongation-only and saturation
(Fig. 3.7). Transition into elongation-only occurs after ashort stabilization phase
at an almost constant position. Because no basal meristem ismodeled, this posi-
tion equals the meristem size. The transition into saturation is superimposed by
an oscillation with a period of the cell division time (12 h). Quantization effects
overlay the oscillation making the transition position fuzzy.

The dimension of the elongation-only zone determines the velocity of the root
tip (Fig. 3.8). The oscillation found in the saturation position is therefore trans-
ferred into the tip’s velocity. Slight quantization effects are visible in the magni-
fied section. Oscillations of the root tip are well documented and have been shown
to depend on several environmental factors as nutrient availability (Walter et al.
2003; Walter and Schurr 2005). It is however still unknown how they occur, al-
though a model based on two circular growth waves linked to ion-fluxes has been
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proposed (Shabala and Newman 1997).

Figs. 3.9 and 3.10 show the time evolution of the wall extensibility, velocity,
osmotic potential and cell length of a chosen cell. A cell is∼ 7 h in the elongation-
only zone, which is considerable less than the cell cycle time (12 h), as becomes
clear from the evolution of wall extensibility. The time evolution of the cell’s ve-
locity shows that the cell accelerates exponentially untila maximum velocity is
reached (same as the root tip velocity). The proposed osmoregulation maintains
the osmotic potential as near as possible to the set-point valueψs = −0.5 MPa.
Even so, dilution can be clearly seen. As with the velocity, the cell length grows
exponentially until the mature cell size is reached.

3.3.2 Auxin change

We examine in this Section the behavior of the model to changes in auxin pro-
duction rate. Such auxin concentration changes correspondto the shoot sending
information to the root to control/influence growth. Two situation are examined.
First, a sudden increase in auxin production is simulated and the reaction of the
root tip’s velocity is determined (Fig. 3.11). Second, to understand the effects on
the velocity, the dependence of the meristem and elongaton-only zone dimension
on the production rate was determined (Fig. 3.12).

Growth, in particular the size of the meristem and elongation-only zone, de-
pends on the auxin production rate. This was simulated by a sudden change in
auxin production rateκin

2 after the root stabilized from the germination process.
Fig. 3.11 shows the root tip velocity versus time. Att = 150 h the production
rateκin

2 was increased tenfold from10−2 to 10−1 mmol m−3min−1. After the
change, the tip slows abruptly down to0.9mmh−1 for one hour, and rises then to
oscillate around1.4 mmh−1, which is considerably lower than before the change
(1.8 mmh−1). Beemster and Baskin (2000) found that a synthetic auxin (2,4-
dichlorophenoxyacetic acid) applied exogenously toArabidopsis thaliana(L.)
Heynh. roots reduced the tip velocity substantially. This is consistent with our
model results. It is noteworthy that not only the mean velocity changed, but also
the amplitude of the oscillation increased by a factor of1.5.

The size of the division zone (meristem) and elongation-only zone were de-
termined for a variable production rateκin

2 (Fig. 3.12). This was achieved by
changingκin

2 suddenly att = 150 h from 10−2 mmol m−3min−1 to a new value
between2 × 10−5 and2 × 10−1 mmol m−3min−1. For each new value a new
simulation was started. Meristem and elongation-zone sizefall with increas-
ing auxin production (Fig. 3.12). Beemster and Baskin (2000) determined the
REGR distribution after application of auxin and found that the elongation-only
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zone narrows and shifts towards the quiescent center without a change in maxi-
malREGR. Hence, auxin affects the distribution of wall extensibility rather than
the wall extensibility itself. The model presented here behaves similarly. On in-
creasing auxin production the meristem size, which corresponds to the transition
position into elongation-only, shifts towards the apical cell and the elongation-
only zone shrinks. Beemster and Baskin (2000) found in contrast to the models
prediction the meristem, defined as the division active zoneand independent of
elongation, to shift basally on application of auxin. This discrepancy between
measurements and model can be explained either by the measurement method
used (Beemster and Baskin 2000), or by the strict separationbetween elongation
and division assumed in this model (Section 3.2.5). On the one hand, the method
used by Beemster and Baskin 2000 to measure theREGR distributions relies on
a small number of markers and has thus no high spatial resolution. On the other
hand, a strict separation between cell division and elongation is improbable.

3.3.3 Conclusion

The auxin- and cytokinin-like properties given to the two hypothetical phyto-
hormones are essential to the control of the model’s root elongation zone. The
cytokinin-like hormone produces mainly a gradient, which is modulated by the
concentration of the auxin-like hormone. A similar strategy may be used in real
primary roots to control the root elongation zone. These twohormones may be
part of a positional system, which allows the root cells to obtain information on
their position along the root axis. The effects of auxin on the elongation zone
(Beemster and Baskin 2000) and the sudden change between meristematic and
elongative growth support this view (Ivanov and Maximov 1999; van der Weele
et al. 2003). Plants may influence this positional system by changing the pro-
duction and/or distribution of auxin and cytokinin. This seems to be the main
strategy involved in the gravitropic reaction, where the axial auxin redistribution
is shifted towards one side to produce curvature. The model shows that a plant
shoot is able to influence root growth by changing the production of auxin, and
provides a sound basis for extension into gravitropism models. The refinement
of the growth equation allows a connection to models of biomechanics and water
uptake, so that the influences of soil properties on root growth may be modeled.
Solute uptake, transport and deposition is essential for root growth. The model is
too simplistic in this point and should be extended to include the transport and de-
position of solutes, in particular because of the importance of carbohydrates in the
growth process and osmotic active solutes in water uptake. It became also clear
that a strict separation between division and elongation restricts the model too
much. However, allowing both to overlay complicates the numerical treatment of
the problem substantially (particularly in multidimensional models). The mecha-
nism involved in auxin signaling and action are still too unknown and oblige the
use of an empirical ratio function.



Chapter 4

Curvature Phenomena

4.1 Introduction

Differential growth in cylindrical organs,

t

n
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=ρ κ−1

α

Figure 4.1: Cylindrical organ
which grows and curves.ρ andκ
denote the curvature radius and cur-
vature at distances from the or-
gan apex, respectively.α(s) is the
curvature angle at positions, while
αT ip denotes the tip’s curvature an-
gle. The tangentt and normaln
are shown. The dashed circle seg-
ments on the upper and lower sides
have the same arc length, and the
hatched area depicts the gradient in
volume increase produced by differ-
ential growth.

such as roots and hypocotyls, is a complex pro-
cess that involves changes in transcription and
dynamic alteration of protein expression pat-
terns (Muday 2001; Friml and Palme 2002;
Friml et al. 2002; Blilou et al. 2005; Teale
et al. 2005). Quantitative analysis of growth
and differential growth is a prerequisite to un-
derstand the molecular organization of this
process.

Several concepts have been used to char-
acterize curvature of cylindrical organs. The
three most noticeable being probably: differ-
ential relative elemental growth rate (REGR)
distributions (Silk and Erickson 1978; Silk
1989; Ishikawa and Evans 1993; Zieschang
et al. 1997; Mullen et al. 1998a), the cur-
vatureκ (e.g. Silk and Erickson 1978; Silk
1989; Selker and Sievers 1987; Zieschang and
Sievers 1991) and distributions of curvature
angle (Mullen et al. 1998b; Mullen et al.
2000; Wolverton et al. 2002a; Wolverton et al.
2002b).

Differential REGR distributions and the
rate of change of curvature (dtκ) have been
shown to be equivalent (Silk and Erickson
1978; Silk 1989; Zieschang et al. 1997). However, differential REGR profiles
are prone to errors, because the traditional method to measureREGR distribu-
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tions relies on a relatively small amount of markers and interpolation schemes
need to be applied (Peters and Bernstein, 1997). Moreover, the determination
of curvature production through differentialREGR profiles is critical, because
the coordinates of the profiles have to be matched correctly (non-trivial for e.g.
curved root geometry and easily resulting in artifacts).

As will be shown below,κ anddtκ are not suited to describe the change of
orientation of an organ and do not quantify sufficiently the production of curva-
ture. This becomes clear in Fig. 4.1, whereκ is constant anddtκ is zero, although
the orientation of the organ changes. Quantitative relations of curvature produc-
tion at specific regions need to be established to elucidate differential growth and
organ curvature in gravitropism, phototropism and hydrotropism (see e.g. Blan-
caflor and Masson 2003; Eapen et al. 2005; Esmon et al. 2005). Therefore, the
concept of the curvature angle distribution (Mullen et al. 1998b; Mullen et al.
2000; Wolverton et al. 2002a; Wolverton et al. 2002b) was extended here, to find
a suitable measure of curvature production (differential growth curvature rate,
DGCR).

Theoretical calculations presented below, show for curvature occurring in a
plane the relation of theDGCR to dtκ and to differentialREGR profiles. More-
over, this concept is extended to describe curvature and torsion processes in three
dimensions. In addition to this, theDGCR is applied in a simple model of root
gravitropism, and used to simulate two different cases of curvature production
in root gravitropism (one and two sites of production). The recent proposal of
the existence of two motors in root gravitropism is tested therewidth (compare
Wolverton et al. 2002a). The simulations presented here show that a suitable
measure of curvature production is essential to be able to separate two motors that
are located so closely as proposed (in the distal elongationzone, DEZ, and in the
central elongation zone, CEZ; Ishikawa and Evans 1993; Wolverton et al. 2002a),
and confirm the need of a suitable measure of curvature production (DGCR).

4.2 Curvature production in R
2

In some situations, the center curve of curving organs can beapproximated by a
plane curveϕ 7→ R

2 (compare for example roots during the gravitropic reaction).
In this section we assume curvature in a plane, while in the following section the
case inR3 will be treated. The natural coordinate system of a curveϕ (s(t), t) ∈
C2(R × R,R3) either inR

2 or R
3, wheres is the arc length, is given by (e.g.

Smirnow 1990)

t = ∂sϕ

n = ∂st

κ
= ∂2

ssϕ
κ

b = t × n ,
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wheret is the tangent1, n is the normal andb is the binormal ofϕ, andκ = ‖∂st‖
is the curvature and× denotes the vector product. Compare also Fig. 4.1. The
curvature vectorN is defined as

N = ∂st = κn ,

and gives a measure of the intensity and direction of curvature. Here, the midline
ϕ of the organ depends on timet because it deforms due to the curvature process
as a consequence of asymmetrical growth. The rate of change of the curvature
vector can be used to determine the rate of change ofκ. The rate of change ofN
is given by

dtN = dt∂st = ∂s∂tt + ∂2
sst dts = ∂s (∂tt + ∂st v) − ∂stREGR ,

where velocity,v = dts, and relative elemental growth rateREGR = ∂sv, and
the chain-law of differentiation were used. However, becauset = t (s(t), t)

dtt = ∂tt + ∂st v ,

so that

dtN = ∂sdtt − ∂stREGR .

Now taking into account that the tangential and normal vectors are rotated by an
angular velocityΩ = ω b, we find

dtt = Ω × t = ω b× t = ω n ,

dtn = Ω × n = ω b× n = −ω t
(4.1)

and

dtdN = ∂s(ω n) − ∂stREGR

= (∂sω)n + ω ∂sn− κREGRn

= (DGCR− κREGR)n− κωt ,

wereDGCR = ∂sω is denoteddifferential growth curvature rate, ∂st = κn,
∂sn = −κ t (Smirnow, 1990) and the chain-law of differentiation were used.
Now usingdtN = dtκn + κ dtn we finally obtain

dtκ = DGCR− κREGR . (4.2)

This shows that the rate of change of curvaturedtκ is composed of a “production”
termDGCR and the term−κREGR. The latter can be denoted as dilution term,

1No confusion should arise between the tangentt and timet, as one is boldface and the other
italic.
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because it is negative for growing organs (asκ > 0 andREGR > 0).

The meaning of theDGCR becomes clear through a curvature conservation
equation, which is obtained using

dtκ = ∂tκ+ ∂sκ v = ∂tκ + ∂s(κ v) − κREGR ,

so that comparison delivers

∂tκ + ∂s(κ v) = DGCR . (4.3)

Coupling this equation to a conservation equation (comparee.g. the mass con-
servation equation∂tρ + div (ρv) = 0) shows that in the context of a curvature
conservation equationDGCR is thesource of curvature. This shows thatDGCR
is exactly the concept sought for to characterize production of curvature. More-
over its calculation is simple through the angular velocityω (tropic speed)

DGCR := ∂sω . (4.4)

It is defined according to theREGR, as a divergence of a “velocity”. However,
instead of representing the relative increase in length, itdescribes the amount of
curvature angle produced per unit time and unit length. Therefore, the curvature
angle can be obtained by an integration

α(s(t), t) =

∫ T

0

∫ s(t)

0

DGCR ds(t) dt . (4.5)

Note that because the arc lengths(t) changes in time, the integration over distance
and over time do not commute.

4.3 Differential growth in R
2

The term differential growth has to be defined carefully, because it can be
interpreted widely and lead to missunderstandings. A measure of growth could
be the rate of change of length, of area or of volume or the relative growth rate
(REGR, RGR). REGR gradients may be interpreted as differential growth (Zi-
eschang et al. 1997; Mullen et al. 1998a). However, althoughaREGR gradient
may not exist, the organ can be changing its orientation due to a gradient in rate of
change of length.2 This makes clear, that orientation is determined by gradients

2REGR measures the relative increase in length. For sameREGR, a long length element
increases absolutely more than a short element, leading to achange of orientation.
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in rate of change of length and not by gradients inREGR. Differential growth
will thus be defined here, in the context of tropisms, as the process behind changes
in orientation.

The connection of theDGCR to REGR

ρ
l

ρ
u

2r

ρ

ssl

su

β

Figure 4.2: Simplified geome-
try of a curved cylindrical organ.
ρ is the curvature radius of the
midline, whileρu andρl are the
curvature radius’ of the upper
and lower sides.β is the opening
angle of the arc segmentss, su

andsl (midline, upper and lower
side respectively), andr is the
radius of the organ.

gradients is found by assumption of a cylin-
drical organ of radiusr (Fig. 4.2; compare
Silk and Erickson 1978; Silk 1989; Zieschang
et al. 1997). At a certain arc length, the mid-
line and the upper and lower sides can be ap-
proximated by segments of a circle. The cur-
vature radiusρ of the midline curve can be de-
termined through

s = β ρ ⇒ ρ = ∂βs ,

wheres is the arc length andβ is the opening
angle of the segment. The difference in curva-
ture radius between the upper and lower sides
is

ρu − ρl = ∂βsu − ∂βsl = 2 r . (4.6)

The organ is assumed to have a constant
radiusr, so that the time derivative of Eq. (4.6)
is

dt(∂βsu − ∂βsl) = 0 .

The partial derivative∂β and total derivativedt do not commute becauseβ = β(t),
so that using the chain-law of differentiation andsu,l = su,l (β(t), t) the above
Equation is transformed into

∂β (∂tsu + ∂βsu dtβ − ∂tsl − ∂βsl dtβ) − (∂βsu − ∂βsl) ∂βdtβ = 0 .

However,dtβ = ω is the angular velocity by which the tangentt is rotated, so
that

∂βdtβ = ∂sdtβ ∂βs = ρ∂sω = ρDGCR ,

whereDGCR = ∂sω andρ = ∂βs were used. Taking now into account Eq. (4.6)
and thatdtsu,l = ∂tsu,l + ∂βsu,ldtβ we find
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DGCR =
∂s(vu − vl)

2 r
, (4.7)

wherevu = dtsu andvl = dtsl are the rate of change of arc length of the upper
and lower sides, respectively. Eq. (4.7) can be transformedinto an expression of
aREGR gradient

DGCR =
REGRu − REGRl

2 r
+ κ

REGRu +REGRl

2
. (4.8)

whereREGRu = ∂su
vu andREGRl = ∂sl

vl are theREGR of the upper and
lower sides respectively. The second term on the right of Eq.(4.8) arises from the
change of variabless 7→ su,l. Note that in general

REGR 6= (REGRu +REGRl)/2 .

Silk and Erickson 1978 derived a similar expression to Eq. (4.8)

dt ln(1 + 2 r κ′) = REGRu − REGRl , (4.9)

whereκ′ is the curvature of the lower side. A simple but somewhat cumbersome
calculation shows that Eq. (4.9) is consistent to Eqs. (4.2)and (4.8) up to second
order terms ofκ r. 3

The determination of curvature productionDGCR through (4.4) is superior
to using (4.8), as it uses the midline of the organ and is of particular advantage in
root tips, where cell lineages have a complicated geometry near the quiescent cen-
ter and organ radiusr cannot be assumed to be uniform along the axis (Hejnowicz
and Hejnowicz, 1991).

4.4 Curvature in R
3

In the past sections we treated curvature production of organs in a plane. Nonethe-
less, curvature processes occur in the three dimensional space. This opens new
motion possibilities, in particulartorsionof the organ. Circumnutations of roots
and hypocotyls is known to include torsion of the organ (e.g.Silk 1989; Barlow
1992). A description in plane is thus only a rough approximation. However, the

3Silk and Erickson 1978 used another nomenclature:M(o) = REGRu, M(i) = REGRl

and in particularR = ρ − r. This results in a slightly different curvature than the used here:
κ′ = R−1 6= ρ−1 = κ.
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plane case can be subsequently extended to describe curvature inR
3.

The calculations presented in Section 4.2 are based on Eq. (4.1). In R
3 the

rotation axis oft andn is not anymoreb. Instead the angular velocityΩ is a
linear combination of the three vectors

Ω = ωt t + ωn n + ωb b , (4.10)

whereωt = Ω · t, ωn = Ω ·n andωb = Ω ·b. Eq. (4.10) shows thatΩ acts also on
the binormalb (torsion). The time dependence of the natural coordinate system
is determined by the ODE

dtt = Ω × t = ωb n − ωn b

dtn = Ω × n = ωt b − ωb t

dtb = Ω × b = ωn t− ωt n

for 0 < t

t(0) = t0 , n(0) = n0 , b(0) = b0 for t = 0

(4.11)

Through a calculation analogous to Section 4.2, but taking Eq. (4.11) and
∂sn = −κ t − τ b (Smirnow 1990) into account, we find

dtκ = −ωn τ + ∂sωb − κREGR ,

dtτ = ωn κ− ∂sωt − τ REGR ,
(4.12)

whereωn = ω an andωt = ω at. Eq. (4.12) is a coupled ODE system, which
solution givesκ andτ at any time. Eq. (4.12) can be transformed into conservative
form, yielding

∂tκ+ ∂s(κ v) = −ωn τ + ∂sωb ,

∂tτ + ∂s(τ v) = ωn κ− ∂sωt .
(4.13)

This shows that the sources of curvature and torsion are given by

DGCR := −ωn τ + ∂sωb ,

DGTR := ωn κ− ∂sωt ,
(4.14)

whereDGTR is thedifferential growth torsion rate. Note that theDGCR in Eq.
(4.14) is consistent with Eq. (4.4), becauseτ = 0 for organs that curve in a plane.
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Figure 4.3: Root growth and model of gravitropism motors. Solid line de-
notes ameasuredrelative elemental growth rate (REGR) distribution of
anA. thalianaroot (average over first3 h of gravitropic reaction; provided
by K. A. Nagel, Forschungszentrum Jülich). Dashed and dashed dotted
lines denote the differential growth curvature rate (DGCR) assumedfor
two and one gravitropism motor(s), respectively.

Root gravitropism model

The proposed measureDGCR is applied here in a simple model of the gravit-
ropic reaction of roots. Eq. (4.3) can be used to simulate twocases of curvature
production: one and two sites of production. These cases areconceivable in root
gravitropism, as the existence of two motors have been proposed recently (Wolver-
ton et al. 2002a). These motors have been assumed to be located at the distal and
central elongation zones (DEZ and CEZ; Ishikawa and Evans 1993), which are
centered around the elongation maximum (CEZ) and apically of the elongation
maximum where growth attains30% of the maximalREGR (DEZ; compare Fig.
4.3).

Let a gravitropism motor be given by a bell-shaped curve

M(s, β) = A sin(β) exp

(

−s− s0

σ2

)

, (4.15)

wheres is the arc-length,β is the stimulation angle,A is an amplitude,s0 is the
center position of the motor andσ2 describes the extension of the motor. The fac-
tor sin(β) models the dependence on the stimulation angleβ and was chosen in
terms of the Sine-Law (Sachs 1882).
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Table 4.1: Simulation parameters of root grav-
itropism model.

Motor A (mm−1 h−1) s0 (mm) σ2 (mm2)

One motor
One 2.1 0.19 2 × 10−3

Two motors
One 1.05 0.19 2 × 10−3

Two 1.05 0.3 5 × 10−3

Because theDGCR is the source of curvature [compare Eq. (4.3)], and
sources are additive, it can be described as a sum over the motors

DGCR(s, β) =

N
∑

i=0

Mi(s, β) =

N
∑

i=0

Ai sin(β) exp

(

−s− s0,i

σ2
i

)

, (4.16)

whereN is the number of motors present. An extension of this expression to
describe more than one sensor, i.e. more than one stimulation angleβ, should be
straightforward. When the root is initially stimulated by90◦, the stimulation angle
and curvature angle of the whole organ are related byβ = 90◦ − αT ip.

Note that the model of the dependence of the motors on the stimulation angle
is very simplistic. Signal transduction is not instantaneous in organs, so that in-
formation on the stimulation angle needs time to reach the sensitive tissue (refer
to Swarup et al. 2005 for the case of auxin). Moreover, it is still unclear if the
Sine-Law is correct (e.g. Audus 1964; Barlow et al. 1993; Mullen et al. 2000).
However, as will become clear below, the fact that the reaction decreases in time
is here more important than the actual law behind it.

Using Eqs. (4.3) and (4.16) two root gravitropism cases weresimulated. The
first assumes that one motor is responsible for curvature production, the second
case assumes two spatially separated motors (Wolverton et al. 2002a). The pa-
rameters used in the simulation are presented in Table 4.1. These were chosen to
resemble anArabidopsis thaliana(L.) Heynh. root, and were based on the defini-
tion of the DEZ and CEZ and on unpublished measurements of thegravitropism
kinetics ofA. thalianaroots (measurements conducted in the author’s lab). The
velocity distributionv was obtained by integration of a measuredREGR distri-
bution (average over first3 h of gravitropic reaction of anA. thalianaroot; dataset
provided by K. A. Nagel, Forschungszentrum Jülich). TheREGR distribution
and the gravitropism motors are shown in Fig. 4.3. As Eq. (4.3) is a conserva-



58 CHAPTER 4. CURVATURE PHENOMENA

tion equation, it was solved using theConservative Lax Method, which has been
shown to be stable for suitable discretization widths (e.g.Potter 1973). These
widths were chosen here to meet this stability condition (time: 10−3 h, space:
3 µm, fastest propagation velocity:< 80 µmh−1).

Fig. 4.4 A,B presents the simulation results under the assumption of one mo-
tor, while Fig. 4.4 C,D shows the results for two motors. Bothcases showed a
similar distribution ofκ, composed initially of one peak located at the site of pro-
duction, which reduced intensity in time and gave rise to a second broader peak
(Fig. 4.4 A,C). The second peak can be contributed to advection/convection of
curvature (Silk and Erickson 1978; Silk 1989), as becomes clear from the move-
ment of its maximum. The first peak is due to production and itsdistance to the
quiescent center is thus constant. A change in the intensityof the first motor is
essential for the existence of the second peak. If no change in intensity would oc-
cur, growth dilution [compare Eq. (4.2)] would ensure that beyond the curvature
motors the distribution ofκ would fall monotonically without having a second
maximum. Measurements ofLepidiumandPhleumroots confirm the existence
of a moving and a fixed peak (Selker and Sievers 1987; Zieschang and Sievers
1991). Wolverton et al. 2002a interpreted those two peaks asthe two motors of
gravitropism. However, the simulations presented here show that both cases, of
one and two motors, exhibit this behavior. Thus,κ is insufficient to show the ex-
istence of two motors that are located so closely.

The rate of change of curvaturedtκ, which could erroneously be interpreted
as a measure of curvature production [compare Eqs. (4.2) and(4.3)], fails also
to show a clear separation of both motors (Fig. 4.4 C,D). If the distribution of
κ is determined with a low resolution, which has been the case due to technical
reasons (e.g. Selker and Sievers 1987; Zieschang and Sievers 1991), the existence
of one or two motors cannot be definitively determined usingdtκ (Figs. 4.4 B,D).
Both cases show due to growth dilution a similardtκ pattern. For the case of two
motors, the second motor appears strongly reduced, so that the pattern may be
interpreted as a slightly wider motor (Figs. 4.4 D). Curvature production may in
general be underestimated around the elongation maximum, if dtκ is assumed to
be a measure of production.

In contrast toκ and dtκ, theDGCR shows clearly either one or two mo-
tors (Figs. 4.4 B,D). The theoretical results found above are confirmed here; the
DGCR measures the production of curvature and emphasizes the twomotors in-
dependently of growth dilution. A hint for the specific function of the two motors
is also found here. The model shows that the first motor, located where growth
dilution is small, has a key role in curvature initiation, while the second, located
where growth dilution is maximal, is crucial in maintainingcurvature (Fig. 4.4
D). Note that the model presented here is not able to differ between one motor
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Figure 4.4: Simulated curvature and rate of curvature along a root axis.A, distribution of curvatureκ along a root axis, under the assumption of
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the assumption of two gravitropism motors located at the DEZand at thecentral elongation zone(CEZ). D, distribution ofdtκ andDGCR. Two
motors located at the DEZ and CEZ are assumed to produce curvature.
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with a large spatial extension and two spatially separated motors. This question
can only be answered experimentally, through investigation if these cell groups
are either controlled by two different sensors (Wolverton et al. 2002a; Wolver-
ton et al. 2002b), or regulated through different phytohormones (Aloni et al.
2004). Nonetheless, the model shows that a better measure ofcurvature produc-
tion (DGCR) is essential to elucidate this.

TheDGCR was defined as the slope of the tropic speed distributionω(s) =
dtα(s) [Eq. (4.4)], and is thus analogous to theREGR, defined as the slope of
the velocity distributionv(s). Such an analogy between translational and rota-
tional movement is well known in physics (e.g. Halliday and Resnick 1988). The
DGCR can be interpreted as follows. A rigid body can only move by means of
a translation and/or a rotation. Because it is rigid, any volume element of it ro-
tates with the same angular velocity. In non-rigid bodies, such as graviresponding
roots and hypocotyls, the angular velocity changes in space, reflecting deforma-
tion. In cylindrical organs, the tropic speedω is an angular velocity and variations
of it in space reflect curvature, which production is quantified by theDGCR. The
DGCR represents the amount of curvature angle produced per unit length and unit
time.4 Curvature angle kinetics of root segments have been used intuitively be-
fore to characterize the gravitropic reaction of roots (Mullen et al. 1998b; Mullen
et al. 2000; Wolverton et al. 2002a; Wolverton et al. 2002b).However, these do
not allow a quantitative determination of curvature production, although this is es-
sential to understand the control and signal pathways behind differential growth.
This gap is filled by thedifferential growth curvature rateDGCR, and should
thus serve as a helpfull tool for future measurements.

4TheDGCR can be expressed either in radians or in degrees per unit length and unit time.
Radians should be used, when a comparison todtκ is sought for.



Chapter 5

Root Gravitropism

In Chapter 3 we presented a one-dimensional model of root growth. Abundant bi-
ological data was available to synthesize this model (Erickson and Sax 1956; Silk
et al. 1989; Walter et al. 2002). Roots however vary substantially from a one-
dimensional structure, they tend to curve, to circumnutate, to follow gradients of
nutrients and humidity and, not to forget, to grow towards the direction of the
gravity vector (e.g. Blancaflor and Masson 2003; Eapen et al.2005; Walter and
Schurr 2005). This encourages to expand the model presentedin Chapter 3 into
two or three dimensions. However, in contrary to the one-dimensional case, no
extensive biological information is available, although this data is a prerequisite
to model root growth. We therefore chose to investigate how root growth reacts to
gravitropic stimulation. Aim was here to obtain data as accurate as possible and
suitable for future modeling. This needed, however, a considerable extension of
the growth analysis methods available (Walter et al. 2002).

This chapter is divided into three sections. The first is a biological introduc-
tion into root gravitropism (Section 5.1). The second describes the analysis of
curvature (Section 5.2, based on Chapter 4). And finally, Section 5.3 is dedicated
to the overall characterization of the gravitropic reaction, based on measurements
of wild-type and PIN3 deficient mutants.1

5.1 Introduction

Root gravitropism has been a topic of research for a long time. Although thesine
rule2 was formulated more than 120 years ago (Sachs, 1882), the complete mech-
anism of root gravitropism is still unclear. In the last years the polar transport
of the plant hormone auxin in roots has been extensively investigated (Muday
2001; Friml and Palme 2002; Friml et al. 2002; Blancaflor and Masson 2003;

1The PIN3 efflux facilitator protein is involved in relocation of auxin from the central root
stele to the epidermal and cortical cell files, and is essential in the gravitropic signal transduction.

2Classical sine-law: the gravitropic stimulus is proportional to the sine of the inclination angle.
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Figure 5.1: Simplified auxin transport model. During the gravitropic reaction,
auxin is preferentially transported into the lower side of the root inhibiting growth
and resulting in curvature. The curvature angleαT ip between the root tip and the
horizontal is shown.
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Figure 5.2: Curvature kinetics ofArabidopsis thaliana(L.) Heynh. roots. The
curvature angleαT ip between the root tip and the horizontal is shown.
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Blilou et al. 2005; Teale et al. 2005). The current transportmodel, denominated
fountain-model, is based on influx (AUX/LAX) and efflux (PIN) facilitator pro-
teins located on the plasma membrane (Muday 2001; Friml and Palme 2002); Per-
bal and Driss-Ecole 2003). It assumes that auxin is transported apically around the
central cylinder by PIN1, apically near the columella by PIN4 leading to accumu-
lation, radially from quiescent center towards the cortex by PIN3 and basipetally
in the cortex towards the expansion zone by PIN2 (Fig. 5.1; Blancaflor and Mas-
son 2003; Blilou et al. 2005; Teale et al. 2005).

One of the central statements of the fountain-model is that upon gravitropic
stimulation PIN3 is asymmetrically reallocated in the columella cells. Auxin
transport towards the cortex cells occurs then preferentially to the lower side of the
root upon gravitropic stimulation (Fig. 5.1; Blancaflor andMasson 2003). There-
fore, in the lower side more auxin is transported towards theexpansion zone,
leading to growth inhibition and to the actual bending (Blancaflor and Masson,
2003). Perception of gravity is believed to be accomplishedin the columella cells
by sedimentation of statoliths (Blancaflor and Masson 2003;Chen et al. 1999;
Perbal and Driss-Ecole 2003).3 However, hints of gravisensitivity outside the col-
umella exist (Wolverton et al. 2002a; Wolverton et al. 2002b). The chain of events
between perception and reallocation are still not known.

Friml et al. (2002) found that roots ofpin3 mutants, which lack the PIN3
protein,4 react considerably slower to gravitropic stimuli than wild-type roots do.
However, the question of why these mutants still react to reorientation has not
been answered. Based on the fountain-model, no asymmetrical auxin redistri-
bution is expected inpin3 roots. Thus, either other auxin transport proteins are
involved or roots use auxin independent pathways (Aloni et al., 2004). The ex-
istence of dual motors and sensors of gravitropism have beenproposed recently
(Wolverton et al., 2002a), and might explain whypin3mutants still react.

Measurements of gravitropic reaction have been conducted traditionally by
determining the kinetics of the curvature angle (Fig. 5.2; Larsen 1957; Johns-
son 1965; Perbal et al. 2002; Wolverton et al. 2002a). Larsen(1957) proposed
the empiricallogarithmic modelto describe the curvature kinetics. It states that
the increment in response is proportional to the relative increment of the dose.
The existence of apresentation time, minimal duration of stimulus to induce a
response, is a consequence of this model. The presentation time has been used
to characterize the sensitivity to gravitropic stimuli. Perbal et al. (2002) proposed

3Statoliths are specialized amyloplasts composed of dense materials (starch in roots, barium
sulfate crystals in Chara rhizoids), and have a central role, as sedimentation bodies, in gravity
perception.

4The convention used in molecular biology to designate mutants is to name them after the
missing product. These are then written lowercase and italics, while the product itself is written
roman and uppercase. For example,pin3 is the mutant that lacks the protein PIN3.
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thehyperbolic model, in which the response is limited by a ligand-receptor sys-
tem, which fits the data more accurately. In contrast to the logarithmic model, the
hyperbolic model does not involve a presentation time. Therefore, the slope of
the curve at the origin was proposed as an index of gravitropic sensitivity. It is
easily shown that neither the logarithmic nor the hyperbolic model are accurate as
neither of take growth, the mediator of curvature, into account.5

Although the kinetics of curvature are an important tool forinvestigation of
gravitropism, they are in their traditional form not suitedto obtain information
about the distribution of curvature production. However, determining the cell
groups involved in gravitropic bending is essential to understand the gravitropic
response. Attempts have been made to deduce curvature from the asymmetri-
cal distribution of growth among opposite cell lineages along the root growth
zone (Ishikawa et al. 1991; Mullen et al. 1998a; Zieschang etal. 1997). This
method gave insight into the location of curvature production. The distal elonga-
tion zone (DEZ), a group of cells between the meristem and thezone of maximum
elongation, is believed to be responsible for curvature initiation (Ishikawa et al.
1991; Ishikawa and Evans 1993; Ishikawa and Evans 1997; Mullen et al. 1998a).
Along with the DEZ, the central elongation zone (CEZ), a zonelocated around
the elongation maximum, has been reported to be involved in curvature produc-
tion (Wolverton et al., 2002a). However, this method is intrinsically susceptible to
errors, because it makes assumptions on the root geometry. Roots differ consider-
ably from a cylindrical body, so that the question arises howpositions on different
cell lineages are matched.

5.2 Advances in curvature analysis

Although the measurements of gravitropic reaction evolvedsubstantially in time,
from hand measurement of curvature angle to automated digitizer systems (Sachs
1882; Mullen et al. 1998b), all suffered from a low spatio-temporal resolution of
growth and curvature analysis. This problem can be dealt with by applying and
adapting novel high resolution growth measurement methods(Schmundt et al.
1998; Walter et al. 2002; van der Weele et al. 2003). These methods have been
successfully used to characterize differential reactionsof REGR distributions to-
wards changes of external parameters (Walter et al. 2002; Walter et al. 2003), and
suit, together with the results of Chapter 4, the problem of characterization of the
gravitropic reaction.

5A consequence of Eqs. (4.5) and (4.8) in Chapter 4, is that an inflection point in the curvature
kinetics has to be present (clearly present in Fig. 5.2). However, neither the logarithmic nor the
hyperbolic model contain this behavior.
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Using differential growth to determine the gravitropic reaction is not a new
concept (Selker and Sievers 1987; Zieschang et al. 1997; Mullen et al. 1998a).
However, the traditional method to measureREGR distributions contains some
pitfalls, because it relies on a relatively small amount of markers. TheREGR
distribution is acquired by applying interpolating schemes, which give rise to a
large variation margin in the resulting distribution (Peters and Bernstein, 1997).
The method used here for calculation of theREGR achieves a much higher spa-
tial and temporal resolution (see e.g. Figs. 5.9 and 5.10 on pages 75 and 76).
Moreover, the determination of curvature production through differentialREGR
profiles is prone to errors, because the coordinates of the upper and lowerREGR
profiles have to be matched correctly (non-trivial for curved root geometry, com-
pare Fig. 5.4 on page 70). The method used here uses the coordinate system of
the root mid-line and avoids this problem a priori.

A new concept of curvature production, thedifferential curvature production
rate (DGCR; Chapter 4), has to be introduced to give consideration to the accu-
racy needed in determination of differential growth upon gravitropic stimulation.
Until now the kinetics of curvature angle, e.g. Fig. 5.4 on page 70, have been the
sole concept used to characterize the intensity of the reaction. These have been ex-
tended to obtain spatial information by tracking of the angle of segments (Mullen
et al., 1998b). However, curvature angle is not sufficient toobtain reliable infor-
mation on the location of curvature production. We therefore propose here the
concept of theDGCR according to the relative elemental growth rate (REGR),
which has been used successfully in root growth for decades (Erickson, 1976).
This new concept of curvature production and the high spatio-temporal resolution
of the applied method extend the set of essential tools needed in elucidation of the
molecular mechanisms behind curvature initiation.

5.2.1 Calculation of spatio-temporal distributions

The spatio-temporal distributions of relative elemental growth rate (REGR) and
the differential curvature production (DGCR), are determined using several steps:
a) determination of velocity field, b) regularization of velocity field, c) tracking of
a curveϕ, d) calculation ofREGR andDGCR profiles on the curve.

Velocity field

The velocity of each pixel(i, k) at framem, is determined using thestructure
tensor method(Bigün and Granlund 1987; Haußecker and Spies 1998; Schmundt
et al. 1998; Walter et al. 2002). The discretization of the structure tensor method
is done via differentiation filters optimized for directional accuracy of the gradient
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(Scharr, 2005). These filters are essential for the high precision of the estimated
optical flow fields required for subsequent processing steps.

Regularization

Under normal circumstances, this method does not deliver dense velocity fields,
e.g. when an image region lacks sufficient grey value structure. Thus, to obtain
a dense velocity field, a regularization, meaningful fillingof missing information,
has to be performed. The regularization was implemented as anormalized convo-
lution (Jähne, 1997).

Curve tracking

After obtaining the velocity of each pixel, the velocity field is interpolated to be
able to track points between pixels. A linear interpolationwas chosen, as the ob-
tained velocity field is smooth and a higher interpolation order does not render
additional accuracy. The position of any chosen point can betracked in time by
using anEuler-Scheme(Stoer and Burlisch, 2000a). This can be used to track
any curveϕ, e.g. the root mid-line, by discretization ofϕ into a set ofN points
ϕj. Each pointϕj is tracked in time, so that an approximation of the curveϕ
at each frame is obtained. The pointsϕj and their positions in each frame are
subsequently processed to obtain the spatio-temporal distributions ofREGR and
DGCR. For all measurements, the initial pointϕ0 of ϕ is chosen at the transition
between quiescent center and apical meristem, i.e. the quiescent center and the
calyptra are not tracked.

5.2.2 Relative elemental growth rate

To obtain theREGR spatio-temporal distribution, the distancelj between points
ϕj andϕj+1 is calculated for each frame (refer also to Chapters 2 and 3).The
REGR of the length elementlj is

REGRj =
1

lj
dtlj = dt ln lj , (5.1)

and is used to obtain the spatio-temporal distribution ofREGR (compare Fig. 5.9
on page 75). TheREGR can also be defined as the derivative of the projection
of the velocity field onϕ: REGR = ∂xv. Eq. (5.1) allows a simple but effective
time averaging (Peters and Bernstein, 1997)

REGRj =
1

T

∫ T

0
REGRj(τ)dτ =

1

T

∫ T

0
dτ ln ljdτ =

1

T
ln

(

lj(T )

lj(0)

)

, (5.2)
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Figure 5.3: Denoise of spatio-temporal data. The x-axis represents arc
length (distance to quiescent center) and the y-axis time since reorien-
tation, color and height display intensity of scalar data. Aand B, raw
curvature angle and rawDGCR distributions. C, denoisedDGCR dis-
tribution.

whereT is the time over which averaging is done. Eq. (5.2) uses only the initial
and final length. If a coordinate(xj , yj) is assigned to each length elementlj , Eqs.
(5.1) and (5.2) provide raw and time averagedREGR profiles onϕ. See Fig. 5.10
on page 76 for an example result of the averaging method (visualized usingVTK,
Visualization ToolKit, Kitware, Inc., New York, U.S.A.).

5.2.3 Differential growth curvature rate

An approximation of the curvature angle distribution alongthe root is easily ob-
tained through the curve pointsϕj . The derivative in time of the curvature angle
gives the angular velocity, which is a measure of the rate of change of an angle.
The angular velocity can be calculated for each segmentϕj+1 − ϕj

ωj = dtαj , (5.3)

whereαj is the curvature angle of the segment andωj the corresponding angular
velocity. A rotating rigid body has an uniform angular velocity, while the angular
velocity along a curving body varies in space. In analogy to theREGR, the dif-
ferential curvature productionDGCR is defined as the divergence of the angular
velocity

DGCRj = ∂xωj ≈
ωj+1 − ωj−1

lj + lj−1
. (5.4)

This gives the amount of curvature degrees produced per unitlength and unit time.

5.2.4 Denoising of spatio-temporal distributions

REGR andDGCR are obtained through derivatives [Eqs. (5.1) and (5.4)]. There-
fore a small disturbance in the velocity field expands to a large error inREGR



68 CHAPTER 5. ROOT GRAVITROPISM

andDGCR (Fig. 5.3). Several methods to reduce noise are available (Black and
Rangarajan, 1996). We chose to use a diffusive approach, based on the minimiza-
tion of a functional composed of a data and a smoothness term [compare Black
and Rangarajan 1996, Eq. (1)]

J(u) =

∫

(u− uorig)
2 dx+ λ

∫

‖∇u‖2 dx→ min , (5.5)

whereu is the smooth solution anduorig is the original data. Depending onλ,
the solution is either smoother, or it is nearer to the original noisy data. The
minimization process is achieved using an iterative scheme. Fig. 5.3 shows the
effect of Eq. 5.5 on theDGCR of a selected root during the gravitropic reaction
(reorientation by90 ◦).

5.2.5 Normalization and averaging of distributions

Due to natural variations of root growth within one plant line, the distribution
of REGR andDGCR have to be normalized to be able to produce meaningful
average spatio-temporal distributions. Normalization isachieved by the transfor-
mation

REGR′ = REGR
REGRmax

,

DGCR′ = DGCR
DGCRmax

,

x′ = x−x0

σ
,

(5.6)

whereREGR′ andx′ are the transformed relative elemental growth rate and posi-
tion,REGRmax is the maximal growth rate,DGCRmax is the maximal curvature
production rate,x0 is the position of the growth maximum andσ is half the full
width at half maximum. Eq. (5.6) transforms theREGR distribution such that
the maximum, located at position zero, has a value of one and the distribution has
a full width of one at half maximum. The normalized distributions of different
roots can then be averaged without artificial flattening or loss of form. The aver-
age distribution can subsequently be de-normalized using the mean normalization
coefficients. Eq. (5.6) is a spatial normalization, but we are also interested in the
temporal evolution. If the normalization process would be applied at each frame,
the temporal evolution of the spatial distribution would get lost. We chose thus
to use a reference spatial distribution to normalize the spatial distributions in each
frame. For each measurement, the reference frame is obtained by averaging of
theREGR distribution during the response. After determination of the reference
frame, the measurement is normalized and the average over all measurements is
determined. The average spatio-temporal distributions (compare Fig. 5.9 on page
75) can be used to obtain either the kinetics through spatialintegration (Figs. 5.5
and 5.6 on page 71) or the average spatial distributions through integration in time
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(Figs. 5.7 and 5.8 on page 72).

5.3 Characterization of root gravitropism

In this section the results of Chapter 4 and the Methodological Advances described
in Section 5.2 are applied to characterize the gravitropic reaction of wild-type and
mutant roots. Based on the determination of optical flow of gray-value structures
through image sequences, we mapped the gravitropic root curvature of individ-
ual roots by introduction of a novel curvature production quantification method.
Averaging of the individual data sets allowed to determine the specific contribu-
tion of PIN3 to growth along the growth axis. We demonstrate that two spatially
separated cell groups are responsible for curvature production upon stimulation,
and identify these cell groups with the two motors of gravitropism proposed re-
cently (Wolverton et al., 2002a). Additionally, we demonstrate that only one of the
motors depends on PIN3, suggesting that the other motor is based on a different
pathway (compare Aloni et al. 2004).

5.3.1 Kinetics of growth and curvature

Analysis of kinetic changes of curvature angle and inspection of the images of
both wild-type and mutant roots showed thatpin3roots curved substantially slower
than wild-type (wt) roots (Fig. 5.4). While wild-type roots curved by50◦ within
the first3.5 h of reaction,pin3mutants reached only27◦. The gravitropic reaction
was accompanied by variation in root growth velocity, i.e. the velocity by which
the root tip moves away from the non-growing basal region.

Reorientation of wild-type andpin3 roots reduced growth velocity in both or-
gans (Fig. 5.5). Growth velocity of wild-type roots declined significantly during
the first hour reaching a minimum, but recovered during the following 3 h to al-
most the original velocity.pin3 roots however recovered substantially slower over
4 h before the original growth was resumed (Fig. 5.5). This suggests that the
growth rate ofpin3was essentially modified.
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Figure 5.4: A and B, Selected wild-type andpin3 roots before and3.5 h after
reorientation by90◦. C, Curvature angle kinetics of wild-type andpin3 roots after
reorientation by90◦. The standard errors for every15-th data point are shown
(wild-type: n = 6, pin3: n = 5).
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Figure 5.5: Root tip velocity kinetics of wild-type andpin3 roots after reorienta-
tion by 90◦. The standard errors for every15-th data point are shown (wild-type:
n = 6, pin3: n = 5).
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Figure 5.6: Evolution in time of the angular velocity of the root tip of wild-type
andpin3 roots during gravitropic response (rotated by90◦). The standard errors
for every15-th data point are shown (wild-type:n = 6, pin3: n = 5).
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The angular velocity (i.e. the slope of the curvature angle kinetics, see Fig.
5.4) of the root tip gives information on the rate of curvature of the root. As
shown in Fig. 5.6, analysis of the angular velocity reveals that the reaction of
wild-type roots was composed of three phases, during which angular velocity in-
creased distinctly in the first and second hour followed by a phase of decreasing
angular velocity from2 h onwards. A maximal angular velocity was reached ap-
proximately2 h after reorientation (Fig. 5.6). The transition from the first into the
second phase coincides with the minimum of root tip velocity(1 h after rotation;
Fig. 5.5), suggesting a coordination between curvature andgrowth slowdown.
pin3 lacks the second increasing phase; a sustained phase of constant angular ve-
locity was found instead (Fig. 5.6). Reduction of angular velocity occurred3.5 h
after rotation inpin3 roots, whereas wild-type roots reduced their angular velocity
already2 h after rotation. As the initial curvature phases of wild-type andpin3
roots are comparable, we conclude that the gravitropic curvature is mediated by
two distinct responses, one being PIN3 dependent and another one PIN3 indepen-
dent. This coincides with earlier hypotheses in which the existence of two motors
of gravitropism had been proposed (Wolverton et al., 2002a).

The average spatial distributions of relative elemental growth rate [REGR,
Eq. (5.1) in Section 5.2] in wild-type andpin3 roots before and after reorienta-
tion of the roots by90◦ are shown in Fig. 5.7 (average over4 h of 11 gravitropic
reactions). Bell-shapedREGR distributions with distinctgrowth maximawere
found in both wild-type andpin3 roots before and during gravitropic stimulation.
Before reorientation, the growth distribution of thepin3 roots was apically shifted
to a narrow region close to the quiescent center with a reduced maximal growth
intensity (REGRmax wt: 33 %h−1; pin3: 28 %h−1), and a reduced growth zone
length (75% of the wild-type). The growth maximum ofpin3was also shifted to-
wards the quiescent center (wt at298 µm andpin3at239 µm). Similar differences
between wild-type andpin3 roots were found after reorientation (wt: 25 %h−1 at
271 µm; pin3: 17 %h−1 at 224 µm). Reorientation had similar effects on the
REGR distribution of wild-type andpin3, composed of a significant reduction in
REGRmax and an apical shifting of the growth maximum (wt reduction:75% of
orig. growth and91% of orig. position;pin3: 61% of growth and94% of position).

The average spatial distribution of differential growth curvature rate (DGCR,
Eq. (5.4) in Section 5.2) during the gravitropic response ofwild-type andpin3
roots is shown in Fig. 5.8 (average of 11 roots and over the first 4 h of response).
Both roots increased theirDGCR within the first100 µm behind the quiescent
center. While wild-type roots maintained a more or less constant intensity of
60 ◦mm−1 h−1 between100 µm and250 µm behind the quiescent center,pin3
roots reached a maximum of50 ◦mm−1 h−1 at 120 µm and decreased intensity
towards the base of the growth zone. This suggests that the reaction phases are
spatially separated (compare also Fig. 5.6). Comparison ofcurvature production
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Table 5.1: Mean normalization coefficients of relative elemental growth
rate (REGR) and differential growth curvature rate (DGCR) distri-
butions of wild-type andpin3 roots. Normalization: REGR′ =
REGR/REGRmax, DGCR′ = DGCR/DGCRmax and x′ = (x −
x0)/σ, whereREGRmax and DGCRmax are the maximal values of
REGR andDGCR, x0 is the position of the growth maximum andσ
is the full width at half maximum of the expansion zone. The standard
errors are shown (wild-type:n = 6, pin3: n = 5).

Plant x0 σ REGRmax DGCRmax

(µm) (µm) (%h−1) (◦mm−1 h−1)

wild-type 271 ± 8 169 ± 17 25 ± 2 63 ± 4

pin3 224 ± 17 129 ± 9 17 ± 3 51 ± 8

with the growth distributions shows that curvature occurred apically of the growth
maximum in both roots. The location of curvature initiationdid not depend on the
position of the growth maxima. However, wild-type roots produced a substantial
amount of curvature almost at the growth maximum, in contrast to pin3 roots.

Fig. 5.9 presents a comparison of the spatio-temporal distribution ofREGR
andDGCR of wild-type andpin3 roots during the gravitropic response (reori-
entation by90◦). The x-axis corresponds to the spatial coordinate (distance from
quiescent center), while the temporal evolution is displayed along the y-axis.pin3
roots had a smaller expansion zone and recovered substantially slower than wild-
type roots. The spatio-temporal distribution ofDGCR shows that the length of
the curvature zone and the position of maximalDGCR varied in time (Fig. 5.9).
During the first phase (from0 h to 1 h) the curvature production zone of wild-type
roots shifted and extended basally. Around the transition time between the first
and second phase (1 h), the curvature zone extended basally within a short time
into a region that was more than twice as large as before. From1 h to 3 h the cur-
vature zones overlapped, until around3 h the intensity of the first zone (denoted
by apical curvature zone; from100 µm to 200 µm) was drastically decreased.
The second curvature zone (denoted asbasalcurvature zone, located200 µm to
300 µm behind the quiescent center) curved with similar intensityand shifted
slightly towards the base of the root.pin3 roots, however, showed a completely
different spatio-temporal distribution of curvature production (Fig. 5.9). The basal
curvature zone was absent inpin3 roots, while the apical curvature zone was still
present. This suggests that the apical curvature zone, corresponding to the first
phase, is not regulated by PIN3, while the basal curvature zone, corresponding to
the second phase, depends on PIN3. A color coded representation of the average
REGR distribution along the growth zone and across the width of wild-type and



5.3. CHARACTERIZATION OF ROOT GRAVITROPISM 75

−1 −1 < 0 65 >

< 0 20 >−1

DGCR / ° mm   h

600300 300

4

3

2

1

4

3

2

1

T
im

e 
/ h

T
im

e 
/ h

450150 450150

µDistance from quiescent center /   m

REGR / % h

DGCR

pin3wild−type

REGRREGR

pin3wild−type

DGCR

Figure 5.9: Spatio-temporal distribution of relative elemental growth rate
(REGR) and differential growth curvature rate (DGCR) of wild-type andpin3
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coordinate along the root starting at quiescent center, while they-axis represents
the time since reorientation. The intensity ofREGR andDGCR is represented
as a change in coloration. (wild-type:n = 6, pin3: n = 5).
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Figure 5.10: Color coded average relative elemental growth rate (REGR) distri-
butions of selected wild-type andpin3 roots during gravitropic reaction (reorien-
tation by90◦). Growth is depicted through coloration and height of the surfaces
shown on the right. The averages are over the first hour, from the first to the third
hour and from the third to the fifth hour after reorientation.These are projected
on original images, which are shown on the left side (at0 h, 1 h and3 h). Dif-
ferential growth between the sides of the root produces curvature. The higher the
asymmetry is, the more curvature is produced.
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pin3roots, shown in Fig. 5.10, illustrates this observation. Both roots were rotated
by 90◦ and their growth distribution averaged using Eq. (5.2) overthe first hour,
from the first to the third hour and from the third to the fifth hour. In this depic-
tion, it can be shown that curvature was produced by differential growth between
the sides of the root. During the first hour, the asymmetry in growth between the
upper and bottom side of the roots was similar in the wild-type andpin3 roots.
Both roots showed a strong asymmetry in growth intensity apical of the growth
maximum (apical curvature zone). From one hour to three hours, the plants dif-
fered substantially in overall growth intensity and growthasymmetry (Fig. 5.10).
The wild-type root substantially reduced growth and created a strong asymmetry
between the sides, reflecting a higher curvature production, particularly in a more
basal part of the growth maximum (basal curvature zone). Differential growth also
curved thepin3 root, but slowdown and growth asymmetry were substantiallyless
than in the wild-type root. From the third to the fifth hour growth increased again
accompanied by a reduction in growth asymmetry in both plants.

As mentioned in Section 5.2.5, the growth distributions (Fig. 5.9) are normal-
ized to obtain an average distribution with conserved form.Table 5.1 shows the
average normalization coefficients used in the normalization Eqs. (5.6). Upon
usage of these average parameters, the average normalized distribution was de-
normalized through the inverse of Eqs. (5.6).

5.3.2 Discussion

Differential growth inpin3 roots is disturbed due to the missing PIN3 protein,
which explains their defective gravitropic response (Friml et al., 2002). Our mea-
surements confirmed this behavior, and showed that kineticsof curvature angle
differ substantially between wild-type andpin3 roots (Fig. 5.4). However, the
kinetics of curvature angle do not suffice to understand the effects of PIN3 on
differential growth. We therefore had to define a new analysis, based on spatio-
temporal data (Figs. 5.6 and 5.8 to 5.10). Wild-type roots showed two phases of
increasingDGCR: from 0 h to 1 h and from1 h to 2 h followed by a phase of
decreasingDGCR (Figs. 5.6 and 5.10). An apical curvature zone, which extends
from 100 µm to 200 µm behind the quiescent center, is associated to the first
phase, while the second phase is associated to a basal curvature zone located from
200 µm to 300 µm (Figs. 5.8 and 5.9). Concomitant activation of both curvature
zones is reflected by a highDGCR between1 h and3 h, while inactivation of the
apical curvature zone results in a reduction of curvature rate (from2 h on; Figs.
5.6 and 5.9). The apical and basal curvature zones may constitute the two mo-
tors of gravitropism hypothesized recently (Wolverton et al., 2002a). Until now,
the distal elongation zone (DEZ), a zone empirically definedto be between the
meristem and the growth maximum (Ishikawa and Evans, 1993),was thought to
be the location of the first motor (Ishikawa and Evans 1997; Mullen et al. 1998a;
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Wolverton et al. 2002a). Growth distribution on the upper side of A. thaliana
roots was found to be inhibited near the growth maximum and toshift apically,
leading to the conclusion that the DEZ was responsible for curvature production
(Mullen et al., 1998a). Although we found the apical curvature zone to have a
maximum at120 µm (Fig. 5.8), it is still unclear if the apical curvature zone and
the DEZ coincide. A determination of the DEZ through the growth distribution
is difficult in A. thalianaroots, due to a uniform elongation in the meristem and
an abrupt acceleration in the elongation zone (Fig. 3.1 on page 24; van der Weele
et al. 2003). The apical curvature zone seems rather to be located at the basal
meristem, where cell expansion and division overlay (Beemster et al., 2003). The
second motor was hypothesized to be at the central elongation zone (CEZ), a zone
located around the growth maximum, as it also had been reported to be responsi-
ble for curvature production (Selker and Sievers 1987; Wolverton et al. 2002a).
However, neither had the location of the motors been clearlydetermined yet, nor
had their actual existence definitively been proven. It was possible here for the
first time to characterize the intensity of curvature production in time and along
the roots, demonstrating the existence of the motors and allowing a determination
of their location and time of activity (Fig. 5.9). The use of knockout mutants al-
lowed additionally to show that the basal curvature zone (second motor) depends
strongly on PIN3, while the apical curvature zone (first motor) is not affected
by the absence of this protein (Figs. 5.6, 5.9 and 5.10). We conclude therefore
that auxin mediates the basal curvature zone. However, the signal pathway in-
volved in the first motor is still unclear, although hints fora possible cytokinin
dependency exist (Aloni et al., 2004). As auxin, cytokinin is asymmetrically re-
distributed upon gravitropic stimulation. Because cytokinin reduces meristematic
activity in the root (Werner et al., 2003), an asymmetric distribution of mitosis
upon stimulation is expected and has been confirmed by measurements (Wagner,
1937). Our results show a growth asymmetry in the root meristem during the first
3 h of reaction (Fig. 5.10), confirming an adaptation of cell division, as cell cy-
cle duration and meristematic growth are tightly bound in roots (Beemster et al.
2003; Chavarría-Krauser and Schurr 2004). The root apical meristem has to de-
liver enough cells to keep the expansion zone stable (Beemster et al., 2003), so
that the first motor could be an adaptation of the meristematic activity to the fol-
lowing cell consuming second motor. We found not only a disturbed differential
growth inpin3 roots, but also a reduction of overall growth caused by a smaller
expansion zone (Fig. 5.7). As PIN3 is involved in the axial redistribution of auxin
in the columella cells, the absence of this protein could imply that auxin accumu-
lation is higher inpin3 roots. A smaller expansion zone is consistent with this, as
has been shown by application of auxin and confirmed by a theoretical approach
(Beemster and Baskin 2000; Chavarría-Krauser et al. 2005).We did not find a
correlation between the positions of the first gravitropismmotor and the growth
maximum (Fig. 5.8), suggesting again an auxin-independentmotor.



Chapter 6

Lateral CO2 Diffusion Inside Leaves

6.1 Introduction

Leaves have a complex inner structure composed of several layers (Fig. 6.1).
These inner structures of leaves are not densly packed to provide the photosyn-
thetically active tissue with sufficient CO2. Stomata control the gas exchange
between the leaf and outer air. These are regulated by environmental constrains
mainly CO2 and water availability (Farquhar and Sharkey 1982). The mesophyll,
as the photosynthetically active tissue, consists of palisade tissue with longitudinal
cells more densly packed than the loose spongy tissue. Vascular bundles, respon-
sible for water and nutrient transport, are located within the mesophyll tissue. The
vascular bundles are often surrounded by bundle sheaths (see e.g. Esau 1977),
which in some species range from the upper to the lower epidermis separating air
spaces inside the leaf. Leaves with such extensive bundle sheaths are designated
as heterobaric, while leaves without arehomobaric(Neger 1912; Neger 1918;
Fig. 6.1). In homobaric leaves the air spaces may be connected to compose large
and extensive air compartments, in which gas diffusion may occur over larger dis-
tances than in heterobaric leaves. Homobaricity can therefore enhance the lateral
supply of CO2, which in turn may affect photosynthesis and net CO2 exchange
of leaves (Pieruschka et al. 2005a; Pieruschka 2005). The effect on photosyn-
thesis has been currently discussed in literature (compareMorison et al. 2005;
Pieruschka et al. 2005a; Pieruschka et al. 2005b).

One crucial step towards determining the relevance of lateral diffusion, is the
accurate determination of the diffusivity inside the leaf.The structure of the air
spaces in the parenchyma is complex and irregular (Fig. 6.1). However, the air
spaces are small compared to the characteristic lengths found in CO2 assimilation
patterns, allowing to use ahomogenized diffusion coefficientD to model lateral
CO2 diffusion. There are no direct experimental methods to measure the lateral
diffusion coefficients. Mainly two approaches have been used, either through
measurement of lateral CO2 fluxes using double-gasket leaf chambers (Pieruschka

79
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A B
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stoma

Figure 6.1: Cross sections of: A, heterobaric (Glycine max) and B, ho-
mobaric (Vicia faba) leaves. UE: upper epidermis, P: palisade tissue, VB:
vascular bundle, BS: bundle sheath, BSX: bundle sheath extension, S:
spongy tissue, LE: lower epidermis. Photosynthetically active tissues are
marked green. Images adapted from Pieruschka 2005.
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et al. 2005a), or throughchlorophyll fluorescence imagingcoupled to a mathe-
matical model of lateral CO2 diffusion (Galloët and Herbin 2005; Morison et al.
2005). The first relies on concentration gradients between the two gaskets and uses
differences in net CO2 exchange rates to determineD (Pieruschka et al. 2005a).
These experiments have to be performed in darkness to avoid interferences of pho-
tosynthetic CO2 uptake and photorespiratory CO2 evolution in light. The second
is based on the measurement and calculation of CO2 concentration profiles, which
are then used to determineD through minimization of a suitable error functional
(Galloët and Herbin 2005; Morison et al. 2005). Here, the later was chosen in or-
der to measureD and estimate the impact of lateral CO2 fluxes on photosynthesis.
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Figure 6.3: Chlorophyll fluorescence image of aVicia faba leaf with a
greased area, where gas exchange is prevented. The quantum yield ΦPSII

is shown overlaid on the visual image.

6.2 Calibration model

Gas exchange measurements deliver only average leaf internal CO2 concentra-
tions. To obtain spatial concentration patterns one has to rely on chlorophyll fluo-
rescence imaging (Morison et al. 2005). The chlorophyll fluorescence parameter
ΦPSII = F ′

q/F
′
m, also known asquantum yield, is a measure of the proportion of

light energy (absorbed by photosystem II) used in photosynthetic electron trans-
port. Fig. 6.3 shows theΦPSII distribution of a leaf with a grease covered area.
The grease prevents gas exchange, resulting in a substantially lower ΦPSII as a
consequence of low CO2 partial pressure. The CO2 partial pressureCi inside the
leaf andΦPSII are functionally related (Fig. 6.2). Morison et al. 2005 proposed a
simple hyperbolic model

ΦPSII =
Φmax Ci

Km + Ci
, (6.1)

whereΦmax andKm are parameters. Common linear regression can be used on
suitably transformed variates (Ci 7→ C−1

i andΦPSII 7→ Φ−1
PSII) to fit this model

to measurements of averageΦPSII for givenCis. However, the residuals are un-
acceptable, because of the remaining functional dependence (Fig. 6.2, B). We
therefore propose an improved model based on a sigmoid function

ΦPSII =
Φmax

1 + exp
(

−Ci−Ci,0

σ

) , (6.2)
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Table 6.1: Quantum yieldΦPSII against CO2 partial pressure
Ci calibration parameters of proposed model and model of
Morison et al. 2005. Proposed model is significantly better
than the old model (F-Test:P < 0.0001).

Model Φmax Km Ci,0 σ r2

(Pa) (Pa) (Pa)
Morison et al. 2005 1.16 16.4 — — 0.88

Proposed 0.624 — 6.59 2.88 0.998

whereΦmax, Ci,0 andσ are parameters. Eq. (6.2) describes a sample calibra-
tion curve significantly more accurate than the model proposed by Morison et al.
2005 (F-Test:P < 0.0001; Table. 6.1; Fig. 6.2, A and B). Moreover, the pro-
posed model is also able to extrapolate for smallCi accurately, as becomes clear
by comparing the model to the compensation point determinedthrough gas ex-
change measurements (cross in Fig. 6.2, A). After a calibration curve has been
obtained for the given environmental conditions, and afterthe model (6.2) has
been fitted (parameters shown in Table 6.1), it is simple to apply the inverse of
(6.2) to obtainCi distributions fromΦPSII fluorescence images (Fig. 6.3).

6.3 Lateral diffusion model

The transport equation of CO2 in leaves is given by three overlapping processes:
respiration, assimilation and diffusion (Galloët and Herbin 2005). Leaf cells bind
CO2 through photosynthesis, and as all cells, respire and produce CO2. An ad-
ditional process designatedphotorespirationis closely linked to photosynthesis
due to competitive binding of CO2 and O2 by the RubisCO enzyme, which cat-
alyzes CO2 fixation. However, the experiments presented here were performed
under non-photorespiratory conditions (1% O2); photorespiration can thus be ne-
glected. The transport of CO2 can be approximately described by Fick’s empirical
law (Giovangigli 1999). The respiration rateκresp can be assumed to be constant
and given, while assimilation is described by standard photosynthesis models (von
Caemmerer 2000)

κPS(Ci) =
(Ci − Γ∗)Amax

Ci +Kc (1 +O/Ko)
, (6.3)

whereAmax, Kc andKo are the maximal rate and Michaelis-Menten constant of
carboxylation and oxygenation respectively,Ci andO are the chloroplastic partial
pressures of CO2 and oxygen respectively.Γ∗ is given by
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Figure 6.4: Lateral CO2 diffusion model. A, model domainΩ of part of a leaf
of width ζ and lengthL. An areaΓg is covered by grease.Γs is the boundary
around the domain, whileΓtb is the boundary at the top and the bottom ofΩ.
B, steady-state solution of CO2 diffusion model. Each curve corresponds to a
relative diffusion coefficientD′ = D/Dfa of: 0, 0.05, 0.1, 0.2, 0.3, 0.4 and0.5.
Dfa is the CO2 free air diffusion coefficient.

Γ∗ =
0.5O

Sc/o

, (6.4)

whereSc/o is the relative specificity of RubisCO to CO2 and oxygen (von Caem-
merer 2000).

Let Ω be a model domain describing part of the leaf with an area covered with
grease (Fig. 6.4, A). LetΓs be the boundary surrounding the domain, whileΓtb

denotes the top and bottom boundary ofΩ. The boundary describing the greased
area is denoted byΓg ⊂ Γtp. The steady state concentration distribution is then
given by the transport problem

−D ∆Ci + κPS − κresp = 0 in Ω

∇Ci · n = 0 onΓs

D∇Ci · n = jin onΓtb

, (6.5)

whereD is the CO2 homogenized diffusion coefficient in the leaf, andjin can be
approximated by (von Caemmerer and Farquhar 1981)

jin(Ci, x) = χΓtb\Γg
(x)

(

gs (Ca − Ci) −
E

2
(Ca + Ci)

)

, x ∈ Ω , (6.6)

whereχΓtb\Γg
is the indicator function1 of Γtb\Γg, Ca is the CO2 partial pressure

1The indicator functionχA of a setA is given byχA(x) = 1 for x ∈ A, zero elsewhere.
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outside the leaf andE is the water transpiration rate. Integrating over the leaf
thickness and using the boundary conditions imposed [Eq. (6.5)], a one dimen-
sional problem is obtained

−D d2Ci

dx2 + (Ci−Γ∗) Amax

Ci+Kc (1+O/Ko) = κresp + jin

ζ , 0 < x < L ∈ R

dxCi = 0 , x ∈ {0, L} ⊂ R
, (6.7)

whereζ andL are thickness and length ofΩ respectively (compare Fig. 6.4, A).
This is the sought for problem to model the CO2 concentration distribution. The
diffusion coefficientD in leaves depends on the porosity of the inner structure
(Fig. 6.1). Some plant species, such asV. fabahave a high porosity, other such
as CAM plants, have low porosity.D is thus expected to be between0 andDfa,
whereDfa is the CO2 diffusion coefficient in free air (Dfa = 1.51 · 10−5 m2 s−1,
at 20◦ C under standard atmospheric pressure, Nobel 1999). In the sequel, the
relative diffusion coefficientD′ = D/Dfa will be stated instead.

Eq. (6.7) can be solved using aParameter Value
ζ 479 µm

Amax 195.7 Pa s−1

(=̂38.6 µmolm−2 s−1)

Kc 40.4 Pa

Ko 24.8 · 103 Pa

O 103 Pa (=̂1% O2)

Sc/o 2837.8

κresp 6.6 Pa s−1

(=̂ 1.3 µmolm−2 s−1)

gs 3.96 · 10−3 ms−1

(=̂ 163 mmol m−2 s−1)

E 6.17 · 10−5 ms−1

(=̂ 2.54 mmol m−2 s−1)

Ca 38.28 Pa

Table 6.2: Lateral CO2 diffusion
simulation parameters.

standarddiscrete differenceapproximation
(Stoer and Burlisch 2000b). The result-
ing system of equations is not linear due
to the assimilation rate (6.3), and was thus
solved usingNewton’s method(Stoer and
Burlisch 2000a). Fig. 6.4, B shows the so-
lutions of Eq. (6.7) for the model parame-
ters shown in Table 6.2 and for varyingD′:
0, 0.05, 0.1, 0.2, 0.3, 0.4 and0.5. An ideal
heterobaric leaf hasD′ = 0, while a ho-
mobaric leaf, such asV. faba, hasD′ = 0.3
– 0.5.

Leaf internal CO2 partial pressures are
measured through gas fluxes by applica-
tion of Eq. (6.6) on the net CO2 and water
fluxes (von Caemmerer 2000). This can
be used to determine one photosynthesis
parameter, by application of mass conser-

vation (6.3) at the boundary. Most of the parameters in (6.3)are RubisCO specific
and hence very well determined. Therefore, the maximal assimilation rateAmax,
which substantially varies between species and environmental conditions, is the
best candidate. This is howAmax shown in Table 6.2 was determined.



6.4. DIFFUSION COEFFICIENTS FROM CONCENTRATION PROFILES85

 10  15  20  25  30  35  40  45
 0

 10

 20

 30

 40

 50

C
O

2 
pa

rt
ia

l p
re

ss
ur

e 
C

i /
 P

a

Coordinate / mm

Measurement
Model

Ca

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 10  15  20  25  30  35  40  45

Φ
P

S
II

Coordinate / mm

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

Grease Grease

BA

Figure 6.5: Fit of relative diffusion coefficientD′ = D/Dfa to a mea-
surement of a homobaric (Vicia faba) leaf. A, quantum yieldΦPSII aver-
age profile. B, model result against measurement values (D′ = 0.44).

Two photosynthesis parameters could be determined, when a long range CO2
gradient would be present (e.g. using double-gasket chambers). Additionally to
Amax, the respiration rateκresp, which is measured in dark-adapted leaves (no
photosynthesis), could be obtained. Until now it is not clear if κresp changes be-
tween dark-adapted and light-exposed leaves (Atkin et al. 1998; Loreto et al.
2001).

6.4 Diffusion coefficients from concentration profiles

After having established the diffusion model and its parameters, the homogenized
diffusion coefficientD can be obtained from measurements. These measurements
are calibrated as described in Section 6.2 using the model (6.2) with the param-
eters listed in Table 6.1. However, beforeD′ can be fitted to the data, average
Ci profiles need to be obtained. This is accomplished by averaging the quantum
yield data (Fig. 6.3) perpendicular to the grease boundary,resulting in far less
noisy data than in single profiles (compare Morison et al. 2005). Subsequently,
D′ is fitted to the measurement through minimization of an errorfunctional. Due
to its good stability we chose to use the relative error as thekernel of the error
functional (Galloët and Herbin 2005)

Jerr :=
N

∑

α=1

|Ci(xα) − cαi |
cαi

, (6.8)

whereN is the amount of measurements,(xα, c
α
i ) is theα-th measurement and

Ci(xα) is the model value at positionxα. Because only one parameter is estimated,
Brent’s minimization algorithm was used (implemented inGNU Scientific Library
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Table 6.3:Lateral CO2 diffusion flux effect for different relative diffusion
coefficientsD′ = D/Dfa. Refer to Fig. 6.6 for a description of the areas
I andII and the diffusion distances∆xI and∆xII . K: net CO2 assim-
ilation flux. ∆I and∆K represent the difference to the ideal heterobaric
leaf (D′ = 0), while ∆xI and∆xII measure the diffusion distance into
areaI andII respectively. Fluxes are given inµmolm−2 s−1 and and
distances inmm.

D′ K ∆K I II ∆I ∆xI ∆xII

(I + II) (∆II)

0 299.4 0 299.4 0 0 0 0

0.05 307.5 8.1 297.0 10.5 −2.4 0.5 2.17

0.1 311.4 12.0 296.2 15.2 −3.2 0.75 3.17

0.2 317.0 17.6 295.0 22.0 −4.4 1.08 4.5

0.3 321.2 21.8 294.1 27.1 −5.3 1.33 5.5

0.4 324.8 25.4 293.4 31.4 −6.0 1.5 6.42

0.5 328.0 28.6 292.7 35.3 −6.7 1.67 7.17

(GSL); Stoer and Burlisch 2000a). Fig. 6.5 shows the results for the dataset pre-
sented in Fig. 6.3. Due to the saturation ofΦPSII for high CO2 levels (Fig. 6.2),
high CO2 partial pressures are systematically underestimated. Themeasurements
were thus restrained to CO2 partial pressures lower or equal to10 Pa. The con-
centration in the greased regions tends to reach the compensation point2, because
the size of the grease stripΓg is large enough. The compensation point and the
CO2 distribution are described accurately by the model. The diffusion coefficient
was determined to beD′ = 0.44 (corresponding toD = 6.7 · 10−6 m2 s−1), and is
substantially larger than the results of other measurementtechniques (Pieruschka
et al. 2005a). This is probably a consequence of how Pieruschka et al. 2005a
conducted the experiments. They determinedD from lateral diffusion fluxes over
distances of6 mm to 8 mm, increasing the occurrence of densly packed tissue
and thus underestimating the local occurringD.

6.5 Lateral diffusion effect

The relevance of lateral diffusion in photosynthesis can beestimated by solv-
ing Problem (6.7) for a set of different diffusion coefficients and comparing the
average net assimilation to those of an ideal heterobaric leaf (D′ = 0). The CO2

distribution around a grease boundary in a homobaric leaf, can be classified into
2Compensation pointΓ: CO2 concentration at which no net assimilation occurs, i.e.κresp =

κPS .
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two areas designedI and II (ungreased and greased; Fig. 6.6). These areas
characterize the differences in CO2 partial pressure between homobaric and ideal
heterobaric leaves. Using (6.7), the net CO2 exchange rate (NCER) can be de-
termined

ideal
heterobaric

C
i

∆x I

∆x II

homobaric

ξ g

Coordinate

ξ
ξ

u

������
������
������

������
������
������

I

II

grease

Figure 6.6: Lateral CO2 diffusion effect.
AreaI andII determine the effect on the un-
greased and greased sides respectively.∆xI

and ∆xII give the diffusion distances into
areasI and II respectively (distance be-
tween grease boundary and where the differ-
ence inCi is 5% of the heterobaric value).
ξu and ξg are the lengths of the ungreased
and greased regions respectively, whileξ =
ξu + ξg.

NCER =
1

ξu

∫ ξu

0

jin dx , (6.9)

whereξu is the length of the ungreased
region (Fig. 6.6). TheNCER is de-
livered by gas exchange equipment and
is thus widely used by experimenters.
A short calculation based on Eq. (6.9)
and Problem (6.7) shows

NCER =
ζ

ξu
K , (6.10)

whereζ is the leaf thickness andK is
the net CO2 assimilation flux

K =

∫ ξ

0

(κPS − κresp) dx , (6.11)

whereξ = ξu + ξg is the length of the
ungreased and greased regions. The
difference inK between an ideal het-
erobaric and a homobaric leaf renders
the effect of lateral diffusion on pho-
tosynthesis

∆K =

∫ ξ

0

(

κPS(Ci) − κPS(Cht
i )

)

dx ,

whereCi andCht
i are the CO2 partial pressure distributions of homobaric and

ideal heterobaric leaves, respectively. The use of∆K instead of∆NCER allows
to estimate the strength of the effect for other leaf dimensions (ζ andξu).

In addition toK, the diffusion effect can be estimated through the diffusion
distances∆xI and∆xII , which characterize the range of the effect into the un-
greased and greased regions respectively (Fig. 6.6). This distance is defined as
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the one between the grease boundary and where the differencein CO2 partial pres-
sure is5% of the heterobaric value. The solution of the ideal heterobaric leaf is
constituted by two values:Cht

i = const in ungreased region and compensation
point Γ = const in greased region. The transition between these values is sharp
(compare Fig. 6.4, B). However, in a homobaric leaf, the transition is continuous.
Depending on distance to the leaf boundary and size of the grease strip, the com-
pensation point and the ideal value at the boundary may even not be reached. By
choosing the simulation domain carefully (essentially large enough), these cases
are discarded to allow a calculation of the diffusion distances.

Table 6.3 lists the model results forK, ∆K, ∆xI and∆xII . As expected the
diffusion distances increase withD′. K and hence∆K also increase and reflect
an overall largerNCER in homobaric leaves (Fig. 6.7), although photosynthesis
parameters were kept constant (Table 6.2). The effect strength ∆K can be fitted
by a simple function

∆K = α
√
D′ + β , (6.12)

whereα andβ are coefficients. For the set of simulation parameters in Table
6.2, we found an excellent accordance of (6.12) with the model results (α =
42.4 µmolm−2 s−1 andβ = 1.34 µmolm−2 s−1; r2 = 0.999996). Eq. (6.12)
together with the given parameters, allow to determine the effect strength for a
givenD′ through a simple calculation. Note however thatα andβ depend on the
simulation parameters, Table 6.2, and should not be used formeasurements con-
ducted in other environmental conditions.

These results can be interpreted as follows. Homobaric leaves may exploit
the CO2 resources more efficiently than heterobaric, because of more effective
utilization of CO2. In particular, water use efficiency. These leaves may have an
advantage when exposed to sun flecks, because the light exposed tissue obtains
additional respiratory CO2 from the shaded tissue (Pieruschka et al. 2005b). Such
sunflecks have been reported to substantially contribute tooverall plant carbon
gain in shaded environment (Pearcy et al. 1996; Pfitsch and Pearcy 1989). The
model presented here is easily adapted to this situation. Instead of having a coor-
dinate dependentjin = jin(Ci, x), a coordinate dependentAmax = Amax(x) must
be introduced. The effects should, however, be similar to the here presented.
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Chapter 7

Concluding remarks and
perspectives

Change return success
Going and coming without error
Action brings good fortune
Sunset Sunrise

Syd Barrett, 1967

Throughout this work, some applications of transport equations in plant bi-
ology were presented. The application focused mainly on thescarcely treated
field of cell and tissue growth. On the cell scale, an initial approach to modeling
subcellular growth patterns was proposed and demonstratedusing a simple exam-
ple. On the tissue level, the interplay between cell and tissue scale was demon-
strated through introduction of a control mechanism based on phytohormones.
This shows, that organ growth models should not solely be determined by cellular
properties, such as turgor, wall extensibility, etc., but also by control mechanisms
that operate on an organismic/tissue level (e.g. auxin transport).

However, the mechanical effect of surrounding cells on cellgrowth stays un-
treated. This may become one of the major future challenges of tissue modeling.
Until now, several approaches exist to model tissue mechanics (see e.g. Niklas
1992). However, these do not focus on the mechanical properties of growing
tissue or how growing cells interact mechanically. These models are restricted
to short time scales, in which tissues behave as elastic bodies. On larger time
scales, tissues deform/flow due to growth. Moreover, cells are able to communi-
cate exchanging compounds, introducing coordination and affecting the mechan-
ical properties of their walls. An example of such a complex interaction is the
gravitropic reaction of roots, and was thus treated in the here presented work.
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Gradients in auxin are used by the organ to control extensionof the flanks and
result in curvature of the organ. This shows how closely related are compound
transport, mechanical properties and growth.

In addition to growth, an application of transport equations on leaf CO2 ex-
change modeling was presented. The simple model presented here, describes
quantitatively the lateral diffusion of CO2 in leaves. Nonetheless, many ques-
tions remain unanswered. For example, the transport of CO2 into the leaf through
stomata is still unclear. The current model assumes that it occurs solely on a diffu-
sional basis, and does not take into account that leaves are not packed densly and
gas exchange between stomata is possible. To treat this issue properly, a multi-
component flow of CO2, O2,H2O, etc., should be coupled to leaf geometry and to
photosynthetic models. An accurate CO2 transport model is not only essential for
plant physiology, but also for climatic research. It is thusof relevance to improve
the current model.

The work presented here shows how challenging the quantitative description
of biological systems is. Descriptional biology has reached its bounds already
since a long time. Modern biologists need quantitative approaches to refine and
improve their models. A synthesis of mathematical, physical and biological mod-
els has thus become essential and is becoming an establishedapproach in biology.
Biological systems, from a molecular to an ecological level, pose everyday new
unanswered questions. An interdisciplinary approach may be the only way to find
answers.
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